【題目】在棱長為a的正方體ABCD-A1B1C1D1中,E是棱DD1的中點:

(1)求點D到平面A1BE的距離;

(2)在棱上是否存在一點F,使得B1F∥平面A1BE,若存在,指明點F的位置;若不存在,請說明理由。

【答案】(1);(2) 存在點,中點

【解析】

1)根據(jù)體積橋,首先求解出,進而根據(jù)解三角形的知識可求得,從而可構(gòu)造關(guān)于所求距離的方程,解方程求得結(jié)果;(2)將平面延展,與底面交于中點,過點可作出的平行線,交,中點,即為所求的點;證明時,取中點,利用中位線可證得,從而可知平面,再利用平行四邊形證得,利用線面平行判定定理可證得結(jié)論.

1)連接,,則

,

設(shè)點D到平面A1BE的距離為

,解得:

即點D到平面A1BE的距離為:

(2)存在點,中點

證明如下:取中點,連接,

分別為中點

,則四點共面

平面

又四邊形為平行四邊形 ,又平面

平面

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面上動點到點距離比它到直線距離少1.

(1)求動點的軌跡方程;

(2)記動點的軌跡為曲線,過點作直線與曲線交于兩點,點,延長,,與曲線交于兩點,若直線,的斜率分別為,,試探究是否為定值?若為定值,請求出定值,若不為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)向量,其中,則下列判斷錯誤的是( )

A.向量軸正方向的夾角為定值(與、之值無關(guān))

B.的最大值為

C.夾角的最大值為

D.的最大值為l

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)若,求實數(shù)的取值范圍;

(2)設(shè)函數(shù)的極大值為,極小值為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若曲線在點處的切線方程是,求函數(shù)上的值域;

(2)當(dāng)時,記函數(shù),若函數(shù)有三個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】幾位大學(xué)生響應(yīng)國家的創(chuàng)業(yè)號召,開發(fā)了一款面向中學(xué)生的應(yīng)用軟件.為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動。這款軟件的激活碼為下面數(shù)學(xué)題的答案:記集合.例如:,若將集合的各個元素之和設(shè)為該軟件的激活碼,則該激活碼應(yīng)為____________

定義現(xiàn)指定,將集合的元素從小到大排列組成數(shù)列,若將的各項之和設(shè)為該軟件的激活碼,則該激活碼應(yīng)為_____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓心在軸上,半徑為2的圓位于軸右側(cè),且與直線相切.

(1)求圓的方程;

(2)在圓上,是否存在點,使得直線與圓相交于不同的兩點,且的面積最大?若存在,求出點的坐標(biāo)及對應(yīng)的的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知單調(diào)等比數(shù)列中,首項為 ,其前n項和是,且成等差數(shù)列,數(shù)列滿足條件

() 求數(shù)列、的通項公式;

() 設(shè) ,記數(shù)列的前項和 .

①求 ;②求正整數(shù),使得對任意,均有 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著高考制度的改革,某省即將實施“語數(shù)外+3”新高考的方案,2019年秋季入學(xué)的高一新生將面臨從物理(物)、化學(xué)(化)、生物(生)、政治(政)、歷史(歷)、地理(地)六科中任選三科(共20種選法)作為自己將來高考“語數(shù)外+3”新高考方案中的“3”某市為了順利地迎接新高考改革,在某高中200名學(xué)生中進行了“學(xué)生模擬選科數(shù)據(jù)”調(diào)查,每個學(xué)生只能從表格中的20種課程組合中選擇一種學(xué)習(xí)模擬選課數(shù)據(jù)統(tǒng)計如下表:

序號

1

2

3

4

5

6

7

8

9

10

組合學(xué)科

物化生

物化政

物化歷

物化地

物生政

物生歷

物生地

物政歷

物政地

物歷地

人數(shù)

20人

5人

10人

10人

5人

15人

10人

5人

0人

5人

11

12

13

14

15

16

17

18

19

20

合計

化生政

化生歷

化生地

化政歷

化政地

化歷地

生政歷

生政地

生歷地

政歷地

5人

10人

5人

25人

200人

為了解學(xué)生成績與學(xué)生模擬選課情況之問的關(guān)系,用分層抽樣的方法從這200名學(xué)生中抽取40人的樣本進行分析

(l)樣本中選擇組合20號“政歷地”的有多少人?若以樣本頻率作為概率,求該高中學(xué)生不選物理學(xué)科的概率?

(Ⅱ)從樣本中選擇學(xué)習(xí)生物且學(xué)習(xí)政治的學(xué)生中隨機抽取3人,求這3人中至少有一人還學(xué)習(xí)歷史的概率?

查看答案和解析>>

同步練習(xí)冊答案