19.等差數(shù)列{an}前9項(xiàng)的和等于前4項(xiàng)的和.若a4+ak=0,則k=10.

分析 先設(shè)出等差數(shù)列{an}的首項(xiàng)和公差為a1、d,由等差數(shù)列的前n項(xiàng)和代入條件得到a1和d關(guān)系,再由通項(xiàng)公式代入ak+a4=0,求出k的值.

解答 解:∵等差數(shù)列{an}前9項(xiàng)的和等于前4項(xiàng)的和,
∴9a1+36d=4a1+6d,其中a1為首項(xiàng),d為等差數(shù)列的公差,
∴a1=-6d,
又∵ak+a4=0
∴a1+(k-1)d+a1+3d=0,
把a(bǔ)1=-6d代入上式得,k=10,
故答案為:10

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式應(yīng)用,需要熟練掌握公式并會(huì)應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.函數(shù)f(x)滿足:對(duì)任意α,β∈R,都有f(αβ)=αf(β)+βf(α),且f(2)=2,數(shù)列{an}滿足an=f(2n)(n∈N+).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=$\frac{{a}_{n}}{n}$($\frac{{a}_{n}}{n}$-1),cn=$\frac{_{n}}{_{n+1}}$,記Tn=$\frac{1}{n}$(c1+c2+…+cn)(n∈N+).問(wèn):是否存在正整數(shù)M,使得當(dāng)n>M時(shí),不等式|Tn-$\frac{1}{4}$|<$\frac{1}{{2}^{10}}$恒成立?若存在,寫出一個(gè)滿足條件的M;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.由下面樣本數(shù)據(jù)利用最小二乘法求出的線性回歸方程是$\widehat{y}$=0.7x+m,則實(shí)數(shù)m=0.35.
x3456
y2.5344.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線分別為l1,l2,直線l:y=-x+c過(guò)雙曲線C的右焦點(diǎn)F(c,0),且分別與直線l1,l2交于A,B兩點(diǎn),若$\overrightarrow{FA}$=$\overrightarrow{AB}$,則雙曲線C的離心率為(  )
A.$\sqrt{10}$B.2$\sqrt{2}$C.4D.$\frac{\sqrt{10}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.多面體ABCDFE中,底面四邊形ABCD為矩形,EF∥AD,AE=FD,F(xiàn)G=GD,AD=2AB=2EF=2,且四邊形EADF的面積為$\frac{3\sqrt{3}}{4}$.
(1)判斷直線BF與平面ACG的關(guān)系,并說(shuō)明理由;
(2)若平面EADF⊥平面ABCD,求平面FBC與平面ACG形成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.橢圓經(jīng)過(guò)點(diǎn)(3,0),且離心率是$\frac{2\sqrt{2}}{3}$,則該橢圓的標(biāo)準(zhǔn)方程為( 。
A.$\frac{{x}^{2}}{9}$+y2=1B.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{81}$=1
C.$\frac{{x}^{2}}{9}$+y2=1或$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{81}$=1D.$\frac{{x}^{2}}{9}$+y2=1或$\frac{{x}^{2}}{81}$+$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列判斷中錯(cuò)誤的是( 。
A.若ξ~B(4,0.25),則Dξ=1
B.“am2<bm2”是“a<b”的充分不必要條件
C.若p、q均為假命題,則“p且q”為假命題
D.命題“?x∈R,x2-x-1≤0”的否定是“?x0∈R,x02-x0-1>0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若方程|x2-4|x|-5|=m有6個(gè)互不相等的實(shí)根,則m的取值范圍為(5,9).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某班有25名男生、15名女生共40人,現(xiàn)對(duì)他們更愛(ài)好文娛還是更愛(ài)好體育進(jìn)行調(diào)查,根據(jù)調(diào)查得到的數(shù)據(jù),所繪制的二維條形圖如圖.
(1)根據(jù)圖中數(shù)據(jù),制作2×2列聯(lián)表,并判斷能否在犯錯(cuò)概率不超過(guò)0.10的前提下認(rèn)為性別與是否更愛(ài)好體育有關(guān)系?
(2)若要從更愛(ài)好體育的學(xué)生中各隨機(jī)選2人,求所選2人中女生人數(shù)X的期望;
(3)若要從更愛(ài)好文娛和更愛(ài)好體育的學(xué)生中各選一人分別做文體活動(dòng)協(xié)調(diào)人,求選出的兩人恰好是一男一女的概率;
參考數(shù)據(jù):
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
 更愛(ài)好體育更愛(ài)好文娛 合計(jì)
 男生   
 女生   
 合計(jì)  

查看答案和解析>>

同步練習(xí)冊(cè)答案