分析 (Ⅰ)當(dāng)a=1時(shí),求出圓心C(1,$\frac{1}{2}$),半徑r=$\frac{1}{2}$,求出圓心C到直線y=x的距離,由此利用勾股定理能求出直線y=x被圓C所截得的弦長(zhǎng).
(Ⅱ)先求出所以M(1,0),N(a,0),假設(shè)存在實(shí)數(shù)a,當(dāng)直線AB與x軸不垂直時(shí),設(shè)直線AB的方程為y=k(x-1),代入x2+y2=4,利用韋達(dá)定理,根據(jù)NA、NB的斜率之和等于零求得a的值.經(jīng)過檢驗(yàn),當(dāng)直線AB與x軸垂直時(shí),這個(gè)a值仍然滿足∠ANM=∠BNM,從而得出結(jié)論.
解答 解:(Ⅰ) 當(dāng)a=1時(shí),圓C:x2-2x+y2-y+1=0,
圓心C(1,$\frac{1}{2}$),半徑r=$\frac{1}{2}\sqrt{4+1-4}$=$\frac{1}{2}$,
圓心C(1,$\frac{1}{2}$)到直線y=x的距離d=$\frac{|1-\frac{1}{2}|}{\sqrt{1+1}}$=$\frac{\sqrt{2}}{4}$,
∴直線y=x被圓C所截得的弦長(zhǎng)為:2$\sqrt{(\frac{1}{2})^{2}-(\frac{\sqrt{2}}{4})^{2}}$=$\frac{\sqrt{2}}{2}$.
(Ⅱ)令y=0,得x2-(1+a)x+a=0,即(x-1)(x-a)=0,解得x=1,或x=a,
∴M(1,0),N(a,0).
假設(shè)存在實(shí)數(shù)a,當(dāng)直線AB與x軸不垂直時(shí),設(shè)直線AB的方程為y=k(x-1),
代入x2+y2=4得,(1+k2)x2-2k2x+k2-4=0,
設(shè)A(x1,y1),B(x2,y2),從而${x}_{1}+{x}_{2}=\frac{2{k}^{2}}{1+{k}^{2}}$,x1x2=$\frac{{k}^{2}-4}{1+{k}^{2}}$.
∵NA、NB的斜率之和為$\frac{{y}_{1}}{{x}_{1}-a}$+$\frac{{y}_{2}}{{x}_{2}-a}$=$\frac{k[({x}_{1}-1)({x}_{2}-a)+({x}_{2}-1)({x}_{1}-a)]}{({x}_{1}-a)({x}_{2}-a)}$,
而(x1-1)(x2-a)+(x2-1)(x1-a)
=2x1x2-(a+1)(x2+x1)+2a=$2×\frac{{k}^{2}-1}{1+{k}^{2}}-(a+1)×\frac{2{k}^{2}}{1+{k}^{2}}$+2a=$\frac{2a-8}{1+{k}^{2}}$,
∵∠ANM=∠BNM,所以,NA、NB的斜率互為相反數(shù),$\frac{{y}_{1}}{{x}_{1}-a}+\frac{{y}_{2}}{{x}_{2}-a}$=0,即$\frac{2a-8}{1+{k}^{2}}$=0,得a=4.
當(dāng)直線AB與x軸垂直時(shí),仍然滿足∠ANM=∠BNM,即NA、NB的斜率互為相反數(shù).
綜上,存在a=4,使得∠ANM=∠BNM.
點(diǎn)評(píng) 本題考查弦長(zhǎng)的求法,考查滿足條件的實(shí)數(shù)值是否存在的判斷與求法,是中檔題,解題時(shí)要注意點(diǎn)到直線距離公式、韋達(dá)定理的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,1} | B. | {-1,3} | C. | {3,1,-1} | D. | {1,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a∥α,b∥a⇒b∥α | B. | 若a∥α,b∥α,a?β,b?β⇒β∥α | ||
C. | 若α∥β,b∥α⇒b∥β | D. | 若α∥β,a?α⇒a∥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,4) | B. | [-2,4] | C. | (-∞,1]∪(2,4) | D. | (-∞,1)∪(2,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=sin(\frac{1}{2}x-\frac{π}{3})$ | B. | $y=sin(\frac{1}{2}x-\frac{π}{6})$ | C. | $y=sin(2x-\frac{π}{3})$ | D. | $y=sin(2x-\frac{2π}{3})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com