13.已知定義在R上的函數(shù)f(x)=$\frac{x+a}{{{x^2}+1}}$(a∈R)是奇函數(shù),函數(shù)g(x)=$\frac{mx}{1+x}$的定義域?yàn)椋?1,+∞).
(1)求a的值;
(2)若g(x)=$\frac{mx}{1+x}$在(-1,+∞)上遞減,根據(jù)單調(diào)性的定義求實(shí)數(shù)m的取值范圍;
(3)在(2)的條件下,若函數(shù)h(x)=f(x)+g(x)在區(qū)間(-1,1)上有且僅有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)m的取值范圍.

分析 (1)根據(jù)函數(shù)的奇偶性,求出a的值即可;(2)根據(jù)單調(diào)性的定義判斷m的范圍即可;(3)根據(jù)根域系數(shù)的關(guān)系,通過(guò)討論△的符號(hào),求出m的范圍即可.

解答 解:(1)∵函數(shù)$f(x)=\frac{x+a}{{{x^2}+1}}$是奇函數(shù),
∴f(-x)=-f(x),
∴$\frac{-x+a}{{{x^2}+1}}=-\frac{x+a}{{{x^2}+1}}$得a=0;
(2)∵$g(x)=\frac{mx}{1+x}$在(-1,+∞)上遞減,
∴任給實(shí)數(shù)x1,x2,當(dāng)-1<x1<x2時(shí),g(x1)>g(x2),
∴$g({x_1})-g({x_2})=\frac{{m{x_1}}}{{1+{x_1}}}-\frac{{m{x_2}}}{{1+{x_2}}}=\frac{{m({x_1}-{x_2})}}{{(1+{x_1})(1+{x_2})}}>0$,
∴m<0;
(3)由(1)得$f(x)=\frac{x}{{{x^2}+1}}$,
令h(x)=0,即$\frac{x}{{{x^2}+1}}+\frac{mx}{1+x}=0$,
化簡(jiǎn)得x(mx2+x+m+1)=0,
∴x=0或 mx2+x+m+1=0,
若0是方程mx2+x+m+1=0的根,則m=-1,
此時(shí)方程mx2+x+m+1=0的另一根為1,不符合題意,
∴函數(shù)h(x)=f(x)+g(x)在區(qū)間(-1,1)上有且僅有兩個(gè)不同的零點(diǎn),
等價(jià)于方程mx2+x+m+1=0(※)在區(qū)間(-1,1)上有且僅有一個(gè)非零的實(shí)根,
①當(dāng)△=12-4m(m+1)=0時(shí),得$m=\frac{{-1±\sqrt{2}}}{2}$,
若$m=\frac{{-1-\sqrt{2}}}{2}$,則方程(※)的根為$x=-\frac{1}{2m}=-\frac{1}{{-1-\sqrt{2}}}=\sqrt{2}-1∈({-1,\;1})$,符合題意;
若$m=\frac{{-1+\sqrt{2}}}{2}$,則與(2)條件下m<0矛盾,不符合題意,
∴$m=\frac{{-1-\sqrt{2}}}{2}$,
②當(dāng)△>0時(shí),令h(x)=mx2+x+m+1,
由$\left\{\begin{array}{l}{h(-1)•h(1)<0}\\{h(0)≠0}\end{array}\right.$,得-1<m<0,
綜上所述,所求實(shí)數(shù)m的取值范圍是$({-1,\;0})∪\left\{{\frac{{-1-\sqrt{2}}}{2}}\right\}$.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問(wèn)題、奇偶性問(wèn)題,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{x+a}{{x}^{2}+2x+2}$.
(I)證明:對(duì)任意實(shí)數(shù)a,存在(α,β),α<β,使得函數(shù)f(x)在(α,β)上是增函數(shù);
(Ⅱ)若方程f(x)=x-1有三個(gè)不同實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x-2y≥-2}\\{3x-2y≤3}\\{x+y≥1}\end{array}\right.$,若x+2y≥a恒成立,則實(shí)數(shù)a的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,已知四邊形ABEF為矩形,四邊形ABCD為直角梯形,平面ABEF⊥平面ABCD,∠BAD=90°,AB∥CD,AF=BC=2,CD=3,AB=4.
(1)求證:AC⊥平面BCE;
(2)求三棱錐E-BCF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若關(guān)于a,b的代數(shù)式f(a,b)滿足:
(1)f(a,a)=a;
(2)f(ka,kb)=k•f(a,b);
(3)f(a1+a2,b1+b2)=f(a1,b1)+f(a2,b2);
(4)$f(a,b)=f(b,\frac{a+b}{2})$,
則f(1,0)+f(2,0)=0;f(x,y)=y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某地區(qū)某商品的零售價(jià)格每周不斷發(fā)生變化,但呈現(xiàn)如下規(guī)律:本周價(jià)格a元時(shí),下周價(jià)格以概率p升1元或以概率1-p降1元,若第一周的價(jià)格為20元.
(I)若p=$\frac{1}{2}$,求第五周價(jià)格仍為20元的概率;
(Ⅱ)若p=$\frac{2}{3}$,第五周的價(jià)格為X元,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an}的前n項(xiàng)的和為Sn,且a1=1,a2=4,Sn+1=5Sn-4Sn-1(n≥2),等差數(shù)列{bn}滿足b6=6,b9=12,
(1)分別求出數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若對(duì)于任意的n∈N*,(Sn+$\frac{1}{3}$)•k≥bn恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.為降低霧霾等惡劣氣候?qū)用竦挠绊,某公司研發(fā)了一種新型防霧霾產(chǎn)品.每一臺(tái)新產(chǎn)品在進(jìn)入市場(chǎng)前都必須進(jìn)行兩種不同的檢測(cè),只有兩種檢測(cè)都合格才能進(jìn)行銷售,否則不能銷售.已知該新型防霧霾產(chǎn)品第一種檢測(cè)不合格的概率為$\frac{1}{6}$,第二種檢測(cè)不合格的概率為$\frac{1}{10}$,兩種檢測(cè)是否合格相互獨(dú)立.
(Ⅰ)求每臺(tái)新型防霧霾產(chǎn)品不能銷售的概率;
(Ⅱ)如果產(chǎn)品可以銷售,則每臺(tái)產(chǎn)品可獲利40元;如果產(chǎn)品不能銷售,則每臺(tái)產(chǎn)品虧損80元(即獲利-80元).現(xiàn)有該新型防霧霾產(chǎn)品3臺(tái),隨機(jī)變量X表示這3臺(tái)產(chǎn)品的獲利,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在一次購(gòu)物抽獎(jiǎng)活動(dòng)中,假設(shè)某l0張獎(jiǎng)券中有一等獎(jiǎng)券1張,可獲得價(jià)值100元的獎(jiǎng)品,有二等獎(jiǎng)券3張,每張可獲得價(jià)值50元的獎(jiǎng)品,其余6張沒(méi)有獎(jiǎng),某顧客從此l0張獎(jiǎng)券中任抽2張,求
(I)該顧客中獎(jiǎng)的概率;
(Ⅱ)該顧客獲得獎(jiǎng)品總價(jià)值X的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案