A. | -2 | B. | -1 | C. | 2 | D. | 7 |
分析 利用橢圓方程,化代數(shù)式二元為一元,根據(jù)橢圓方程確定變量范圍,利用配方法,即可求得結(jié)論.
解答 解:∵橢圓$\frac{x^2}{4}+{y^2}=1$,可得-2≤x≤2,∴y2=1-$\frac{{x}^{2}}{4}$,
則$\frac{3}{4}{x^2}+2x-{y^2}$=x2+2x-1=(x+1)2-2,
∵-2≤x≤2,-1≤x+1≤3,
∴x=2時(shí),函數(shù)取得最大值7,即$\frac{3}{4}{x^2}+2x-{y^2}$的最大值為:7.
故選:D.
點(diǎn)評(píng) 本題考查求最大值,橢圓的簡單性質(zhì)的應(yīng)用,考查學(xué)生轉(zhuǎn)化問題的能力以及計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,4] | B. | $[-2\sqrt{13},2\sqrt{13}]$ | C. | [4,+∞) | D. | (-∞,2$\sqrt{13}$]∪[2$\sqrt{13}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 44 J | B. | 46 J | C. | 48 J | D. | 50 J |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com