20.已知函數(shù)f(x)=|x-a|-|x-3|.
(1)若a=-1,解不等式f(x)≥2;
(2)若存在實數(shù)x,使得$f(x)≤-\frac{a}{2}$成立,試求a的取值范圍.

分析 (1)若a=-1,則f(x)=|x+1|-|x-3|,運用函數(shù)的零點分區(qū)間,討論當x≥3時,當-1≤x<3時,當x<-1時,化簡不等式求解,最后求并集即可;
(2)由題意知這是一個存在性的問題,須求出不等式左邊的最大值,可運用絕對值不等式的性質可得最大值,再令其大于等于$\frac{a}{2}$,即可解出實數(shù)a的取值范圍.

解答 解:(1)若a=-1,則f(x)=|x+1|-|x-3|,
若x≥3,由f(x)≥2,
得(x+1)-(x-3)≥2不等式顯然成立,
若-1≤x<3,由f(x)≥2,
得(x+1)+(x-3)≥2,解得x≥2.
又-1≤x<3,∴2≤x<3.
若x<-1,由f(x)≥2,
得-(x+1)+(x-3)≥2不等式不成立.
∴不等式f(x)≥2的解集為{x|x≥2}.
綜上所述,不等式f(x)≥2的解集為{x|x≥2};
(2)不等式$f(x)≤-\frac{a}{2}$即|x-a|-|x-3|$≤-\frac{a}{2}$.
|x-a|-|x-3|≥-|(x-a)-(x-3)|=-|a-3|,
若a>3,等號成立當且僅當x≥3,
若a=3,等號成立當且僅當x∈R,
若a<3,等號成立當且僅當x≤3.
∴-|a-3|$≤-\frac{a}{2}$,即|a-3|$≥\frac{a}{2}$,
若a≥3,則(a-3)$≥\frac{a}{2}$,解得a≥6.
若a<3,則-(a-3)$≥\frac{a}{2}$,解得a≤2.
∴a的取值范圍是(-∞,2]∪[6,+∞).
綜上所述,a的取值范圍是(-∞,2]∪[6,+∞).

點評 本題考查絕對值不等式,求解本題的關鍵是正確理解題意,區(qū)分存在問題與恒成立問題的區(qū)別,本題是一個存在問題,解決的是有的問題,故取|a-3|≥$\frac{a}{2}$,即小于等于左邊的最大值即滿足題意,本題是一個易錯題,主要錯誤就是出在把存在問題當成恒成立問題求解,因思維錯誤導致錯誤,是有一定難度的題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.兩個袋中各裝有編號為1,2,3,4,5的5個小球,分別從每個袋中摸出一個小球,所得兩球編號數(shù)之和小于5的概率為( 。
A.$\frac{1}{5}$B.$\frac{7}{25}$C.$\frac{6}{25}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.對于任意實數(shù)a,b,c,d以下四個命題中,其中正確的有( 。
①ac2>bc2,則a>b,
②若a>b,c>d,則a+c>b+d;
③若a>b,c>d,則ac>bd;
④若a>b,則$\frac{1}{a}<\frac{1}$.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列命題中,正確的是(  )
A.若a>b,c>d,則a>cB.若ac>bc,則a>b
C.若$\frac{a}{{c}^{2}}$<$\frac{{c}^{2}}$,則a<bD.若a>b,c>d,則ac>bd

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.下列命題中,真命題是(  )
A.存在x∈R,ex≤0B.a+b=0的充要條件是$\frac{a}$=-1
C.任意x∈R,2x>x2D.a>1,b>1是ab>1的充分條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某商品在近30天內每件的銷售價格p(元)與時間t(天)的函數(shù)關系是$p=\left\{\begin{array}{l}t+20,0<t<25,t∈N\\-t+100,25≤t≤30,t∈N\end{array}\right.$,該商品的日銷售量Q(件)與時間t(天)的函數(shù)關系是Q=-t+40(0<t≤30,t∈N).
(1)求這種商品的日銷售金額的解析式;
(2)求日銷售金額的最大值,并指出日銷售金額最大的一天是30天的第幾天?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.教材曾有介紹:圓x2+y2=r2上的點(x0,y0)處的切線方程為x0x+y0y=r2.我們將其結論推廣:橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上的點(x0,y0)處的切線方程為$\frac{{{x_0}x}}{a^2}+\frac{{{y_0}y}}{b^2}$=1,在解本題時可以直接應用.已知,直線x-y+$\sqrt{3}$=0與橢圓C1:$\frac{x^2}{a^2}+{y^2}$=1(a>1)有且只有一個公共點.
(1)求橢圓C1的方程;
(2)設O為坐標原點,過橢圓C1上的兩點A、B分別作該橢圓的兩條切線l1、l2,且l1與l2交于點M(2,m).當m變化時,求△OAB面積的最大值;
(3)若P1,P2是橢圓C2:$\frac{x^2}{{2{a^2}}}+{y^2}$=1上不同的兩點,P1P2⊥x軸,圓E過P1,P2,且橢圓C2上任意一點都不在圓E內,則稱圓E為該橢圓的一個內切圓.試問:橢圓C2是否存在過左焦點F1的內切圓?若存在,求出圓心E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知橢圓${C_1}:\frac{x^2}{m^2}+{y^2}=1({m>1})$與雙曲線C2:$\frac{{x}^{2}}{{n}^{2}}$-y2=1(n>0)的焦點重合,e1,e2分別為C1,C2的離心率,則(  )
A.m>n且e1e2>1B.m>n且e1e2<1C.m<n且e1e2>1D.m<n且e1e2<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.為了了解高血壓是否與常喝酒有關,現(xiàn)對30名成年人進行了問卷調查得到如下列聯(lián)表:
常喝不常喝合計
正常血壓4812
高血壓16218
合計201030
已知在全部30人中隨機抽取1人,抽到正常血壓成年人的概率為$\frac{2}{5}$.
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99%的把握認為高血壓與常喝酒有關?說明理由;
(3)4名調查人員隨機分成兩組,每組2人,一組負責問卷調查,另一組負責數(shù)據(jù)處理,求工作人員甲分到負責收集數(shù)據(jù)組,工作人員乙分到負責數(shù)據(jù)處理組的概率.
參考數(shù)據(jù):
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$)

查看答案和解析>>

同步練習冊答案