【題目】已知函數(shù) ,不等式 的解集為[-1,5]
(1)求實(shí)數(shù) 的值;
(2)若 恒成立,求實(shí)數(shù) 的取值范圍。
【答案】
(1)
解:(1)由f(x)≤3,得|x-a|≤3,
∴a-3≤x≤a+3,又f(x)≤3的解集為[-1,5].
∴ ,解得:a=2;
(2)
∵f(x)+f(x+5)=|x-2|+|x+3|≥|(x-2)-(x+3)|=5.
又f(x)+f(x+5)≥m對一切實(shí)數(shù)x恒成立,
∴m≤5.
【解析】(1)由f(x)≤3求解絕對值的不等式,結(jié)合不等式f(x)≤3的解集為[-1,5]列式求得實(shí)數(shù)a的值;(2)利用絕對值的不等式放縮得到f(x)+f(x+5)≥5,結(jié)合f(x)+f(x+5)≥m對一切實(shí)數(shù)x恒成立,即可求得實(shí)數(shù)m的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右頂點(diǎn)分別為,左焦點(diǎn)為,已知橢圓的離心率為,且過點(diǎn).
(1)求橢圓的方程;
(2)若過點(diǎn)的直線與該橢圓交于兩點(diǎn),且線段的中點(diǎn)恰為點(diǎn),且直線的方程;
(3)若經(jīng)過點(diǎn)的直線與橢圓交于兩點(diǎn),記與的面積分別為和,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1﹣x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是( )
A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(﹣2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(﹣2)
D.函數(shù)f(x)有極大值f(﹣2)和極小值f(2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),則a的取值范圍是( 。
A.(﹣∞,4]
B.(﹣∞,2]
C.(﹣4,4]
D.(﹣4,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)=log2( +a).
(1)當(dāng)a=5時(shí),解不等式f(x)>0;
(2)若關(guān)于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一個(gè)元素,求a的取值范圍.
(3)設(shè)a>0,若對任意t∈[ ,1],函數(shù)f(x)在區(qū)間[t,t+1]上的最大值與最小值的差不超過1,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等比數(shù)列{an}中,前7項(xiàng)和S7=16,又a12+a22+…+a72=128,則a1﹣a2+a3﹣a4+a5﹣a6+a7=( )
A.8
B.
C.6
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正數(shù)a、b、c成等比數(shù)列,則下列三數(shù)也成等比數(shù)列的是( )
A.lga , lgb , lgc
B.10a , 10b , 10c
C.5lga5lgb5lgc
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,若存在x0 , 使得 ,則x0稱是函數(shù) 的一個(gè)不動(dòng)點(diǎn),設(shè)
(1)求函數(shù) 的不動(dòng)點(diǎn);
(2)對(1)中的二個(gè)不動(dòng)點(diǎn)a、b(假設(shè)a>b),求使 恒成立的常數(shù)k的值;
(3)對由a1=1,an= 定義的數(shù)列{an},求其通項(xiàng)公式an .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={(x,y)|x,y,1﹣x﹣y是三角形的三邊長},則A所表示的平面區(qū)域(不含邊界的陰影部分)是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com