10.已知二次方程(m-1)x2+(3m+4)x+(m+1)=0的兩個根都屬于(-1,1),求m的取值范圍.

分析 設(shè)f(x)=(m-1)x2+(3m+4)x+(m+1),則由題意利用二次函數(shù)的性質(zhì)求得m的取值范圍.

解答 解:設(shè)f(x)=(m-1)x2+(3m+4)x+(m+1),則由題意可得$\left\{\begin{array}{l}{△{=(3m+4)}^{2}-4(m-1)(m+1)≥0}\\{-1<\frac{3m+4}{2(1-m)}<1}\\{f(-1)•f(1)>0}\end{array}\right.$,
即 $\left\{\begin{array}{l}{{5m}^{2}+24m+20≥0}\\{\frac{5m+3}{2(m-1)}>0}\\{\frac{m+5}{2m-1}<0}\\{(-m-4)(5m+2)>0}\end{array}\right.$,求得-4<m≤$\frac{-12-2\sqrt{11}}{5}$.

點評 本題主要考查一元二次方程根的分布與系數(shù)的關(guān)系,二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若-9,a1,a2,-1四個實數(shù)成等差數(shù)列,-9,b1,b2,b3,-1五個實數(shù)成等比數(shù)列,則$\frac{{a}_{2}-{a}_{1}}{_{2}}$=-$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.矩形ABCD的兩條對角線相交于點M(2,0),AB邊所在直線的方程為x-3y-6=0,點T(-1,1)在AD邊所在直線上.
(1)求AD邊所在直線的方程;
(2)若直線l:ax+y+b+1=0平分矩形ABCD的面積,求出原點與(a,b)距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,△ABC中,∠C=90°,∠A=30°,BC=1,在三角形內(nèi)挖去半圓,圓心O在邊AC上,半圓與BC、AB相切于點C、M,與AC交于點N,則圖中陰影部分繞直線AC旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積為$\frac{5\sqrt{3}}{27}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x)=$\left\{\begin{array}{l}(2a-1)x+4a,x<1\\-x+1,x≥1\end{array}$是定義在R上的減函數(shù),則a的取值范圍是( 。
A.$[\frac{1}{6},\frac{1}{2})$B.$[\frac{1}{3},\frac{1}{2}]$C.$(\frac{1}{6},\frac{1}{2}]$D.$[\frac{1}{3},\frac{1}{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若關(guān)于x、y的方程(m2-4m-5)x2+(m2+5m-6)y2=1表示焦點在y軸上的雙曲線,則實數(shù)m的取值范圍是(1,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若不等式x2-ay2≥(2+a)xy(x>0,y>0)恒成立,則實數(shù)a的最大值為2$\sqrt{3}$-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求下列函數(shù)的定義域、值域:
(1)y=($\frac{2}{3}$) -|x|
(2)y=2${\;}^{\frac{1}{x-2}}$
(3)y=4x+2x+1+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)a=(lg3)2,b=30.3,c=lg$\sqrt{3}$,則( 。
A.a<c<bB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

同步練習(xí)冊答案