17.已知f(x)=1-lnx-$\frac{1}{8}$x2
(Ⅰ)求曲線f(x)在x=1處的切線方程;
(Ⅱ)求曲線f(x)的切線的斜率及傾斜角α的取值范圍.

分析 (1)求導(dǎo)數(shù),確定切線的斜率,即可求曲線f(x)在x=1處的切線方程;
(2)求導(dǎo)數(shù),確定切線的斜率及傾斜角α的取值范圍.

解答 解:(1)∵f(x)=1-lnx-$\frac{1}{8}$x2,
∴f′(x)=-$\frac{1}{x}$-$\frac{1}{4}$x,
x=1時(shí),f′(1)=-$\frac{5}{4}$,f(1)=$\frac{7}{8}$,
∴曲線f(x)在x=1處的切線方程為y-$\frac{7}{8}$=-$\frac{5}{4}$(x-1),即10x+8y-17=0;
(2)x>0,f′(x)=-$\frac{1}{x}$-$\frac{1}{4}$x≤-1,
∴曲線C在點(diǎn)P處切線的斜率為-$\frac{1}{x}$-$\frac{1}{4}$x,傾斜角α的取值范圍為($\frac{π}{2}$,$\frac{3π}{4}$].

點(diǎn)評 本題考查導(dǎo)數(shù)知識的運(yùn)用,考查導(dǎo)數(shù)的幾何意義,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,點(diǎn)A(2,0),直線l垂直y軸,垂足為點(diǎn)B,線段AB的垂直平分線與l相交于點(diǎn)C,
(Ⅰ)求點(diǎn)C的軌跡方程;
(Ⅱ)若P為點(diǎn)C的軌跡上的一動點(diǎn),Q為拋物線x2=y-4上的一動點(diǎn),O為坐標(biāo)原點(diǎn),求△OPQ面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,利用簡單隨機(jī)抽樣的方法在全校一年級學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如表所示:
喜歡甜品不喜歡甜品合計(jì)
南方學(xué)生602080
北方學(xué)生101020
合計(jì)7030100
(1)根據(jù)表中數(shù)據(jù),問是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;
(2)根據(jù)(1)的結(jié)論,你能否提出更好的調(diào)查方法來了解該校大學(xué)新生的飲食習(xí)慣,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某市政府在調(diào)查市民收入增減與旅游愿望的關(guān)系時(shí),采用獨(dú)立性檢驗(yàn)法抽查了3000人,計(jì)算發(fā)現(xiàn)K2的觀測者k=6.023,根據(jù)這一數(shù)據(jù)查閱如表:
P(K2≥k00.500.400.250.150.100.50.0250.0100.0050.001
K00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
得到的正確結(jié)論是( 。
A.有97.5%以上的把握認(rèn)為“市民收入增減與旅游愿望無關(guān)”
B.有97.5%以上的把握認(rèn)為“市民收入增減與旅游愿望有關(guān)”
C.在犯錯(cuò)誤的概率不超過0.25%的前提下,認(rèn)為“市民收入增減與旅游愿望無關(guān)”
D.在犯錯(cuò)誤的概率不超過0.25%的前提下,認(rèn)為“市民收入增減與旅游愿望有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.曲線C:$\left\{\begin{array}{l}{x=secθ}\\{y=tanθ}\end{array}\right.$(θ為參數(shù))的兩個(gè)頂點(diǎn)之間的距離為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對100名六年級學(xué)生進(jìn)行了問卷調(diào)查得到如圖聯(lián)表.且平均每天喝500ml以上為常喝,體重超過50kg為肥胖.已知在全部100人中隨機(jī)抽取1人,抽到肥胖的學(xué)生的概率為0.8.
常喝不常喝合計(jì)
肥胖60
不肥胖10
合計(jì)100
(1)求肥胖學(xué)生的人數(shù)并將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有95%的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān)?說明你的理由.
附:參考公式:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$
P(x2≥x00.050.0250.0100.0050.001
x03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.按照圖1--圖3的規(guī)律,第10個(gè)圖中圓點(diǎn)的個(gè)數(shù)為40個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=$\left\{\begin{array}{l}{{ax}^{2}-6x{+a}^{2}+1(x<1)}\\{{x}^{5-2a}(x≥1)}\end{array}\right.$是R上的單調(diào)遞減函數(shù),則實(shí)數(shù)a的取值范圍是($\frac{5}{2}$,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)f(x)=ex(sinx+acosx)在($\frac{π}{4}$,$\frac{π}{2}$)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,1]B.(-∞,1)C.[1,+∞)D.(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案