已知函數(shù)f(x)=4x2-kx-8,若y=f(x)在區(qū)間(-∞,2]上有最小值為-12,求實(shí)數(shù)k的值.
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:二次函數(shù)f(x)的對稱軸為x=
k
8
,所以討論對稱軸和2的關(guān)系,根據(jù)單調(diào)性或拋物線頂點(diǎn)即可寫出f(x)在(-∞,2]的最小值,建立關(guān)于k的方程,解方程即得k的值.
解答: 解:f(x)=4x2-kx-8=4(x-
k
8
)2-8-
k2
16
;
k
8
≥2
,即k≥16,則f(x)在(-∞,2]上單調(diào)遞減,所以f(2)=16-2k-8=-12,k=10;
k
8
<2
,即k<16,則f(
k
8
)=-8-
k2
16
=-12
,解得k=±8;
∴實(shí)數(shù)k的值為10,8或-8.
點(diǎn)評:考查二次函數(shù)的對稱軸,頂點(diǎn),單調(diào)性,及根據(jù)單調(diào)性或頂點(diǎn)求最小值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z=(m2-2m-3)+(m2-1)i為純虛數(shù),則實(shí)數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將直線x+2y+1=0繞著它與y軸的交點(diǎn),按順時針方向旋轉(zhuǎn)
π
4
,得到直線l,則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-4|-t,t∈R,且關(guān)于x的不等式f(x+2)≤2的解集為[-1,5].
(1)求t值;
(2)a,b,c均為正實(shí)數(shù),且a+b+c=t,求證:
a2
b
+
b2
c
+
c2
a
≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2-2|x|-m的零點(diǎn)有兩個,求實(shí)數(shù)m的取值范圍(  )
A、-1<m<0
B、m>0或m=-1
C、m>0 或-1≤m<0
D、0<m<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x|x-a|,(a≠0)
(1)寫出f(x)的單調(diào)區(qū)間(用a表示)
(2)若f(x)在[3,+∞)上單調(diào)遞增,求a的取值范圍
(3)若f(x)在(m,n)上既存在最大值又存在最小值,求m和n的取值范圍(用a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,a2=2,an=(-1)n×2an-2(n≥3,n∈N*),其前n項和為Sn
(1)求a2n+1關(guān)于n的表達(dá)式;
(2)觀察S1,S2,S3,S4,…,Sn,數(shù)列{Sn}的前100項中相等的項有幾對?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)是定義在R上的奇函數(shù),且當(dāng)x<0時,f(x)=x2-x,求當(dāng)x≥0時,f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a=
8
+
5
,b=
7
+
6
,則a
 
b(填“>”或“<”).

查看答案和解析>>

同步練習(xí)冊答案