5.已知x,y∈R,向量α=$[\begin{array}{l}{-1}\\{1}\end{array}]$是矩陣A=$[\begin{array}{l}{-1}&{x}\\{y}&{0}\end{array}]$的屬于特征值-2的一個特征向量.
(1)求矩陣A以及它的另一個特征值;
(2)求曲線F:9x2-2xy+y2=1在矩陣A對應(yīng)的變換作用下得到的曲線F′的方程.

分析 (1)由已知,得Aα=-2α,利用矩陣變換得到$\left\{\begin{array}{l}1+x=2\\-y=-2\end{array}\right.$,求得x,y的值,代入矩陣可得矩陣A的特征多項式,進(jìn)一步求得另一個特征值;
(2)設(shè)P(x0,y0)為曲線F上任意一點,在矩陣A對應(yīng)的變換下變?yōu)辄cP'(x0',y0'),由矩陣變換把P的坐標(biāo)用P′的坐標(biāo)表示,再由點P在曲線F上得答案.

解答 (1)由已知,得Aα=-2α,即$[{\begin{array}{l}{-1}&x\\ y&0\end{array}}][{\begin{array}{l}{-1}\\ 1\end{array}}]=[{\begin{array}{l}{1+x}\\{-y}\end{array}}]=[{\begin{array}{l}2\\{-2}\end{array}}]$,
即$\left\{\begin{array}{l}1+x=2\\-y=-2\end{array}\right.$,得$\left\{\begin{array}{l}x=1\\ y=2\end{array}\right.$.
∴矩陣$A=[{\begin{array}{l}{-1}&1\\ 2&0\end{array}}]$. …(4分)
從而矩陣A的特征多項式$f(λ)=|{\begin{array}{l}{λ+1}&{-1}\\{-2}&λ\end{array}}|=(λ-1)(λ+2)$,
則矩陣A的另一個特征值為1;       …(7分)
(2)設(shè)P(x0,y0)為曲線F上任意一點,在矩陣A對應(yīng)的變換下變?yōu)辄cP'(x0',y0'),
則$[{\begin{array}{l}{{x_0}'}\\{{y_0}'}\end{array}}]=[{\begin{array}{l}{-1}&1\\ 2&0\end{array}}][{\begin{array}{l}{x_0}\\{{y_0}}\end{array}}]$,即$\left\{\begin{array}{l}{x_0}'={y_0}-{x_0}\\{y_0}'=2{x_0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{y_0}={x_0}'+\frac{{{y_0}'}}{2}\\{x_0}=\frac{{{y_0}'}}{2}\end{array}\right.$,…(11分)
又點P在曲線F上,∴$9x_0^2-2{x_0}{y_0}+y_0^2=1$,
故有$9{(\frac{{{y_0}'}}{2})^2}-2({x_0}'+\frac{{{y_0}'}}{2})\frac{{{y_0}'}}{2}+{({x_0}'+\frac{{{y_0}'}}{2})^2}=1$,整理得,${({x_0}')^2}+2{({y_0}')^2}=1$,
∴曲線F'的方程為x2+2y2=1.    …(14分)

點評 本題考查特殊的矩陣變換,考查了特征向量的意義,關(guān)鍵是對題意的理解,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知$\overrightarrow{m}$=($\sqrt{3}$sin$\frac{x}{4}$,-1),$\overrightarrow{n}$=(cos$\frac{x}{4}$,cos2$\frac{x}{4}$),記f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)求f(x)的單調(diào)遞減區(qū)間及對稱中心;
(2)在△ABC中,∠A、∠B、∠C對邊分別為a、b、c,若f(A)=-$\frac{1}{2}$,a=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.四棱錐P-ABCD中,底面ABCD是直角梯形,AB⊥AD,AD∥BC,側(cè)棱PA⊥ABCD,且PA=AB=BC=2,AD=1
(1)試做出平面PAB與平面PCD的交線EP
(2)求證:直線EP⊥平面PBC
(3)求二面角C-PB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)P是曲線$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}secθ\\ y=tanθ\end{array}\right.$(θ為參數(shù))上的一動點,O為坐標(biāo)原點,M為線段OP的中點,則點M的軌跡的普通方程為8x2-4y2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=2x3-9x2+12x+8.求:
(1)函數(shù)f(x)的極值;
(2)函數(shù)在區(qū)間[-1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=|x+a|+|x-2|,f(x)≤|x-4|的解集為A,若[1,2]⊆A,則實數(shù)a的取值范圍為[-3,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\frac{3}{5}t}\\{y=\frac{4}{5}t}\end{array}\right.$(t為參數(shù)),拋物線C的極坐標(biāo)方程為ρsin2θ=2cosθ.
(1)求出直線l的普通方程及拋物線C的直角坐標(biāo)方程;
(2)設(shè)點P(2,0),直線l與拋物線C相交于A,B兩點,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=-1-\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}$(t為參數(shù)),點P是曲線$\left\{{\begin{array}{l}{x=1+2cosα}\\{y=2+2sinα}\end{array}}$(α為參數(shù))上的任一點,則點P到直線l距離的最小值為$2\sqrt{2}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知集合A={x||x-a|<4},B={x|x2-4x-5>0}
(1)若A∪B=R,求實數(shù)a的取值范圍.
(2)縣否存在實數(shù)a,使得A∩B=∅?若存在,則求a的取值范圍,否則,說明理由.

查看答案和解析>>

同步練習(xí)冊答案