6.已知偶函數(shù)f(x)滿足f(x)=f(4-x)(x∈R),且當(dāng)x∈[-2,0]時,f(x)=-x2,則f(2010)的值是( 。
A.-4B.0C.4D.-20102

分析 本題函數(shù)解析式只知道一部分,而要求的函數(shù)值的自變量不在此區(qū)間上,由題設(shè)條件知本題中所給的函數(shù)是一個周期性函數(shù),故可以利用周期性與函數(shù)是偶函數(shù)這一性質(zhì)將要求的函數(shù)值轉(zhuǎn)化到區(qū)間x∈[-2,0]上求解.

解答 解:定義在R上的偶函數(shù)f(x),滿足f(x)=f(4-x),
∴f(-x)=f(x)=f(x+4)
∴函數(shù)f(x)的周期是4.
∴f(2010)=f(2),
又∵當(dāng)x∈[-2,0]時,f(x)=-x2,
∴f(-2)=f(2)=-4,
故選:A

點(diǎn)評 本題考點(diǎn)是函數(shù)的值,本題考查利用函數(shù)的性質(zhì)通過轉(zhuǎn)化來求函數(shù)的值,是函數(shù)性質(zhì)綜合運(yùn)用的一道好題.對于本題中恒等式的意義要好好挖掘,做題時要盡可能的從這樣的等式中挖掘出信息.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在直三棱柱ABC-A1B1C1中,CC1=AC=2,AB=BC,D是BC1上的點(diǎn).且CD⊥平面ABC1
(1)求證:AB⊥平面BCC1;
(2)求四棱錐C1-ABB1A1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列說法不正確的是( 。
A.既有大小又有方向的量叫做向量
B.不存在長度為零的向量
C.如果兩個向量相等,則兩個向量的長度一定相同
D.零向量可以和任何向量平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知等比數(shù)列{an}中,a5+a7=${∫}_{-2}^{2}$$\sqrt{4-{x}^{2}}$dx,則a6(a4+2a6+a8)的值為( 。
A.16π2B.2C.2D.π2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)a、b是兩條不同的直線,α、β是兩個不同的平面,下列命題中正確的是( 。
A.若α⊥β,a?α,b?β,則a⊥bB.若α∥β,a?α,b?β,則a∥b
C.若α⊥β,a?α,a⊥b,則b∥βD.若a⊥α,a∥b,b∥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知空間向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrow{p}$,若存在實(shí)數(shù)組(x1,y1,z1)和(x2,y2,z2),滿足$\overrightarrow{p}$=x1$\overrightarrow{a}$+y1$\overrightarrow$+z1$\overrightarrow{c}$,$\overrightarrow{p}$=x2$\overrightarrow{a}$+y2$\overrightarrow$+z2$\overrightarrow{c}$,且x1≠x2.試證明向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$共面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知P,A,B,C四點(diǎn)共面且對于空間任一點(diǎn)O都有$\overrightarrow{OP}$=2$\overrightarrow{OA}$+$\frac{4}{3}$$\overrightarrow{OB}$+λ$\overrightarrow{OC}$,則λ=-$\frac{7}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知cos(75°+α)=$\frac{3}{5}$,且75°+α是第四象限角,求cos(105°-α)+sin(α-105°)+sin(15°-α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,已知a=2,b=$\sqrt{2}$,∠A=$\frac{π}{4}$.求∠B.

查看答案和解析>>

同步練習(xí)冊答案