6.甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為$\frac{1}{2}$與p,且乙投球3次均未命中的概率為$\frac{1}{27}$.
(1)求乙投球的命中率p;
(2)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為ξ,求ξ的分布列和數(shù)學期望.

分析 (Ⅰ)由乙投球3次均未命中的概率為$\frac{1}{27}$,利用n次獨立重復試驗中事件A恰好發(fā)生k次的概率計算公式能求出乙投球的命中率p.
(Ⅱ)ξ可取0,1,2,3,分別求出相應的概率,由此能求出ξ的分布列及Eξ.

解答 解:(Ⅰ)P(乙投球3次均未命中)=${C}_{3}^{0}{p}^{0}(1-p)^{3}$=$\frac{1}{27}$,
∵(1-p)3=$\frac{1}{27}$,解得p=$\frac{2}{3}$.
(Ⅱ)ξ可取0,1,2,3,
則P(ξ=0)=$\frac{1}{2}×{C}_{2}^{0}(\frac{2}{3})^{0}(\frac{1}{3})^{2}$=$\frac{1}{2}×\frac{1}{9}$=$\frac{1}{18}$,
P(ξ=1)=$\frac{1}{2}×{C}_{2}^{1}(\frac{2}{3})(\frac{1}{3})$+$\frac{1}{2}×{C}_{2}^{0}(\frac{2}{3})^{0}(\frac{1}{3})^{2}$=$\frac{5}{18}$,
P(ξ=2)=$\frac{1}{2}×{C}_{2}^{2}(\frac{2}{3})^{2}(\frac{1}{3})^{0}+\frac{1}{2}×{C}_{2}^{1}(\frac{2}{3})(\frac{1}{3})$=$\frac{4}{9}$,
P(ξ=3)=$\frac{1}{2}×{C}_{2}^{2}(\frac{2}{3})^{2}(\frac{1}{3})^{0}$=$\frac{2}{9}$,
∴ξ的分布列為:

 ξ 0 1 2 3
 P $\frac{1}{18}$ $\frac{5}{18}$ $\frac{4}{9}$ $\frac{2}{9}$
∴Eξ=$0×\frac{1}{18}+1×\frac{5}{18}+2×\frac{4}{9}+3×\frac{2}{9}$=$\frac{11}{6}$.

點評 本題考查概率的求法,考查離散型隨機變量的分布列及數(shù)學期望的求法,是中檔題,解題時要認真審題,注意n次獨立重復試驗中事件A恰好發(fā)生k次的概率計算公式的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.用數(shù)學歸納法證明不等式$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+n}$>$\frac{13}{24}$(n>2,且n∈N*)的過程中,由n=k遞推到n=k+1時,不等式左邊( 。
A.增加了一項$\frac{1}{2(k+1)}$
B.增加了兩項$\frac{1}{2k+1}$,$\frac{1}{2(k+1)}$
C.增加了B中的兩項,但又減少了另一項$\frac{1}{k+1}$
D.增加了A中的一項,但又減少了另一項$\frac{1}{k+1}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.某工廠生產(chǎn)A,B兩種配套產(chǎn)品,其中每天生產(chǎn)x噸A產(chǎn)品,需生產(chǎn)x+2噸B產(chǎn)品.已知生產(chǎn)A產(chǎn)品的成本與產(chǎn)量的平方成正比.經(jīng)測算,生產(chǎn)1噸A產(chǎn)品需要4萬元,而B產(chǎn)品的成本為每噸8萬元.
(1)求生產(chǎn)A,B兩種配套產(chǎn)品的平均成本的最小值;
(2)若原料供應商對這種小型工廠供貨辦法使得該工廠每天生產(chǎn)A產(chǎn)品的產(chǎn)量x在[0,$\frac{1}{2}$]∪[2,8]范圍內(nèi),那么在這種情況下,該工廠應生產(chǎn)A產(chǎn)品多少噸,才可使平均成本最低?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知{an}是等差數(shù)列,{bn}是等比數(shù)列,Sn為數(shù)列{an}的前n項和,a1=b1=1,且b3S3=36,b2S2=8(n∈N*).
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求數(shù)列{an+bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.輸出下列四個命題:
①回歸直線恒過樣本點的中心($\overline{x}$,$\overline{y}$);
②回歸直線就是散點圖中經(jīng)過樣本數(shù)據(jù)點最多的那條直線;
③殘差平方和越小的模型,模型擬合的效果越好;
④在線性回歸分析中,如果兩個變量的相關性越強,則相關系數(shù)就越接近于1.
其中真命題的個數(shù)為。ā 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知數(shù)列{an}的前n項和為Sn,且Sn是2a與-2nan的等差中項,其中a≠0.
(1)求數(shù)列{an}的前三項a1,a2,a3;
(2)猜想數(shù)列{an}的通項公式,并用數(shù)學歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.某種飲料每箱裝4聽,如果其中有一聽不合格,從一箱中隨機抽取兩聽,則抽到不合格品的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知點F1、F2依次為雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a,b>0)的左右焦點,|F1F2|=6,B1(0,-b),B2(0,b).
(1)若$a=\sqrt{5}$,以$\overrightarrow d=(3,-4)$為方向向量的直線l經(jīng)過B1,求F2到l的距離;
(2)若雙曲線C上存在點P,使得$\overrightarrow{P{B_1}}•\overrightarrow{P{B_2}}=-2$,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.某幾何體的三視圖如圖所示,則該幾何體的表面積為(  )
A.16B.20+6πC.14+2πD.20+2π

查看答案和解析>>

同步練習冊答案