已知雙曲線C1
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
2
,一條漸近線為l,拋物線C2:y2=4x的焦點為F,點P為直線l與拋物線C2異于原點的交點,則|PF|=
 
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:由雙曲線C1
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
2
,可得a=b,從而可得一條漸近線的方程,求出P,F(xiàn)的坐標(biāo),即可求出|PF|.
解答: 解:∵雙曲線C1
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
2
,
∴a=b,
∴一條漸近線為l:y=x,
代入拋物線C2:y2=4x可得P(4,4),
∵拋物線C2:y2=4x的焦點為F(1,0),
∴|PF|=
(4-1)2+42
=5.
故答案為:5.
點評:本題考查雙曲線的幾何性質(zhì),考查直線與拋物線的位置關(guān)系,考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn,滿足:Sn=2an-2n(n∈N*
(1)求證:{an+2}是等比數(shù)列
(2)求數(shù)列{an}的通項an
(3)若數(shù)列{bn}的滿足bn=log2(an+2),Tn為數(shù)列{
bn
an+2
}的前n項和,求證
1
2
≤Tn
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求數(shù)列{
1
n(n+1)
}的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:cos4α+4cos2α+3=8cos4α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班有甲、乙兩個學(xué)習(xí)小組,兩組的人數(shù)如下:現(xiàn)采用分層抽樣的方法(層內(nèi)采用簡單隨機(jī)抽樣)從甲、乙兩組中共抽取3名同學(xué)進(jìn)行學(xué)業(yè)檢測.
(1)求從甲組抽取的同學(xué)中恰有1名女同學(xué)的概率;
(2)記X為抽取的3名同學(xué)中男同學(xué)的人數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
               
32
52

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的方程為
x2
9
-
y2
16
=1,則雙曲線的焦點到漸近線的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等腰三角形ABC中,兩底角B、C的正弦值為
5
13
,則cosA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-x2,x≤1
ex-1,x>1
,則不等式f(x)>1的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點O為△ABC外接圓的圓心,且
OA
+
OB
+
CO
=0,則△ABC的內(nèi)角A等于
 

查看答案和解析>>

同步練習(xí)冊答案