9.在正四棱錐S-ABCD中,SO⊥平面ABCD于O,SO=2,底面邊長為$\sqrt{2}$,點(diǎn)P,Q分別在線段BD,SC上移動(dòng),則PQ兩點(diǎn)的最短距離為(  )
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{{2\sqrt{5}}}{5}$C.2D.1

分析 由于點(diǎn)P、Q分別在線段BD、SC上移動(dòng),先讓點(diǎn)P在BD上固定,Q在SC上移動(dòng),當(dāng)OQ最小時(shí),PQ最小.

解答 解:如圖,由于點(diǎn)P、Q分別在線段BD、SC上移動(dòng),先讓點(diǎn)P在BD上固定,Q在SC上移動(dòng),當(dāng)OQ最小時(shí),PQ最小.過O作OQ⊥SC,在Rt△SOC中,OQ=$\frac{2\sqrt{5}}{5}$,
P在BD上運(yùn)動(dòng),且當(dāng)P運(yùn)動(dòng)到點(diǎn)O時(shí),PQ最小,又等于OQ的長為$\frac{2\sqrt{5}}{5}$,也就是異面直線BD和SC的公垂線段的長,
故選B.

點(diǎn)評 本題考查棱錐的結(jié)構(gòu)特征,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若P(-4,3)是角α終邊上一點(diǎn),則$\frac{cos(α-3π)•sin(-α)}{si{n}^{2}(π-α)}$的值為( 。
A.$-\frac{4}{3}$B.$\frac{4}{3}$C.$\frac{3}{4}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知f(x)=sin(x+θ)+$\sqrt{3}$cos(x+θ)的一條對稱軸為y軸,且θ∈(0,π).求θ=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.當(dāng)|$\overrightarrow a$|=|$\overrightarrow b$|≠0且$\overrightarrow a$、$\overrightarrow b$不共線時(shí),$\overrightarrow a$+$\overrightarrow b$與$\overrightarrow a$-$\overrightarrow b$的關(guān)系是( 。
A.平行B.垂直C.相交但不垂直D.相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.將石子擺成如圖的梯形形狀,稱數(shù)列5,9,14,20,…為梯形數(shù),根據(jù)圖形的構(gòu)成,此數(shù)列的第20項(xiàng)與5的差即a20-5=( 。
A.252B.263C.258D.247

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.中心在原點(diǎn),準(zhǔn)線方程為y=±4,離心率為$\frac{1}{2}$的橢圓的標(biāo)準(zhǔn)方程是$\frac{{y}^{2}}{4}+\frac{{x}^{2}}{3}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知a>0,0<b<1,那么a,ab,ab2的從大到小排列順序是a>ab>ab2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,(a>b>0)$的兩焦點(diǎn)F1,F(xiàn)2,過F2作垂直于x軸的直線與橢圓相交,交點(diǎn)分別是P1,P2,△F1P1P2為正三角形,橢圓的離心率為(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{4}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若非零向量$(\overrightarrow a-\overrightarrow b)•(\overrightarrow a+\overrightarrow b)=0,|{\overrightarrow a+\overrightarrow b}|=\sqrt{3}|{\overrightarrow a}|$,則$\overrightarrow a,\overrightarrow b$的夾角為$\frac{π}{3}$.

查看答案和解析>>

同步練習(xí)冊答案