18.△ABC中,若角A,B,C成等差數(shù)列,則$\frac{ac}{{{b^2}sinAsinC}}$=$\frac{4}{3}$.

分析 由已知利用等差數(shù)列的性質(zhì)可求B的值,利用正弦定理,特殊角的三角函數(shù)值即可化簡求值得解.

解答 解:∵角A,B,C成等差數(shù)列,
∴2B=A+C,A+B+C=180°,解得B=60°,
∵由正弦定理可得:$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}=2R$,
∴$\frac{ac}{{{b^2}sinAsinC}}$=$\frac{2RsinA•2RsinC}{(2RsinB)^{2}sinAsinC}$=$\frac{1}{si{n}^{2}B}$=$\frac{1}{(\frac{\sqrt{3}}{2})^{2}}$=$\frac{4}{3}$.
故答案為:$\frac{4}{3}$.

點評 本題主要考查了等差數(shù)列的性質(zhì),正弦定理,特殊角的三角函數(shù)值在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求函數(shù)f(x)=|x+1|+$\sqrt{(x-2)^{2}}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知$\overrightarrow{a}$=(1,0),$\overrightarrow$=(2,1),則$\overrightarrow{a}$•$\overrightarrow$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在(1+x)6(1+y)4的展開式中,記xmyn項的系數(shù)為f(m,n),求f(3,0)+f(2,1)+f(1,2)+f(0,3)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.甲、乙、丙、丁四名同學(xué)報名參加三個智力競賽項目,每個人都要報名參加.分別求在下列情況下不同的報名方法的種數(shù):
( I)每個項目都要有人報名;
( II)甲、乙報同一項目,丙不報A項目;
( III)甲不報A項目,且B、C項目報名的人數(shù)相同.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知數(shù)列{an}(n=1,2,3,…,2016),圓C1:x2+y2-4x-4y=0,圓C2:x2+y2-2anx-2a2017-ny=0,若圓C2平分圓C1的周長,則數(shù)列{an}的所有項的和為4032.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.復(fù)數(shù)z=(i-1)i的虛部為( 。
A.1B.-1C.-iD.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象在y軸上截距為0,它在y軸右側(cè)的第一個最大值點和最小值點分別為(x0,$\frac{{-1+\sqrt{2}}}{2}$);(x0+π,$\frac{{-1-\sqrt{2}}}{2}$).
(Ⅰ)求f(x)的解析式;
(Ⅱ)若函數(shù)g(x)=f(x)+m|x+$\frac{3π}{4}}$|(m>0)在[-$\frac{11π}{12}$,-$\frac{π}{2}$]上存在零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.f(x)對任意x∈R都有f(x)+f(1-x)=$\frac{1}{2}$.?dāng)?shù)列{an}滿足:an=f(0)+f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-1}{n}$)+f(1),則an=$\frac{n+1}{4}$.

查看答案和解析>>

同步練習(xí)冊答案