8.f(x)對(duì)任意x∈R都有f(x)+f(1-x)=$\frac{1}{2}$.?dāng)?shù)列{an}滿足:an=f(0)+f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-1}{n}$)+f(1),則an=$\frac{n+1}{4}$.

分析 對(duì)任意x∈R都有f(x)+f(1-x)=$\frac{1}{2}$.利用“倒序相加”法即可得出.

解答 解:∵對(duì)任意x∈R都有f(x)+f(1-x)=$\frac{1}{2}$.
∴2an=[f(0)+f(1)]+[f($\frac{1}{n}$)+f($\frac{n-1}{n}$)]+…+[f($\frac{n-1}{n}$)+$f(\frac{1}{n})$]+[f(1)+f(0)]=$\frac{1}{2}$×(n+1),
則an=$\frac{n+1}{4}$.
故答案為:$\frac{n+1}{4}$.

點(diǎn)評(píng) 本題考查了數(shù)列“倒序相加”法求和、函數(shù)的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.△ABC中,若角A,B,C成等差數(shù)列,則$\frac{ac}{{{b^2}sinAsinC}}$=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)隨機(jī)變量 ξ~B(n,p),若E(ξ)=2.4,D(ξ)=1.44,則參數(shù)n,p的值為6,0.4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某小組共有5名學(xué)生,其中女生3名,現(xiàn)選舉2名代表,求至少有1名男生當(dāng)選的概率為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在△ABC中,已知∠B=60°,cosC=$\frac{1}{3}$,c=4$\sqrt{2}$,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)f(x)=|x-1|+2|x|的單調(diào)遞增區(qū)間是[0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在(2$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6的展開(kāi)式中,含x2項(xiàng)的系數(shù)為( 。
A.192B.-192C.180D.-120

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)A、B是拋物線y2=2px(p>0)上的兩點(diǎn),滿足OA⊥OB(O為坐標(biāo)原點(diǎn)).求證:?
(1)A、B兩點(diǎn)的橫坐標(biāo)之積為4p2;?
(2)直線AB經(jīng)過(guò)一個(gè)定點(diǎn).?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.給出的30個(gè)數(shù),1,2,4,7,11,…,其規(guī)律是第1個(gè)數(shù)是1,第2個(gè)數(shù)比第1個(gè)數(shù)大1,第3個(gè)數(shù)比第二個(gè)數(shù)大2,第4個(gè)數(shù)比第3個(gè)數(shù)大3…依此類(lèi)推,要求計(jì)算這30個(gè)數(shù)的和,寫(xiě)出程序.

查看答案和解析>>

同步練習(xí)冊(cè)答案