4.設向量$\overrightarrow{OA}=(5+cosθ,4+sinθ)$,$\overrightarrow{OB}=(2,0)$,則$|\overrightarrow{AB}|$的取值范圍是[4,6].

分析 $\overrightarrow{AB}$=$\overrightarrow{OB}-\overrightarrow{OA}$,可得$|\overrightarrow{AB}|$=$\sqrt{26+10sin(θ-φ)}$,利用正弦函數(shù)的單調(diào)性與值域即可得出.

解答 解:$\overrightarrow{AB}$=$\overrightarrow{OB}-\overrightarrow{OA}$=(-3-cosθ,-4-sinθ),
∴$|\overrightarrow{AB}|$=$\sqrt{(-3-cosθ)^{2}+(-4-sinθ)^{2}}$=$\sqrt{26+8sinθ+6cosθ}$=$\sqrt{26+10sin(θ-φ)}$∈[4,6].
故答案為:[4,6].

點評 本題考查了數(shù)量積運算性質(zhì)、正弦函數(shù)的單調(diào)性與值域,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.設{an}滿足:a1=2,an+1=Sn+n,n∈N*,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.直線l經(jīng)過直線3x+y-1=0與直線x-5y-11=0的交點,且與直線x+4y=0垂直.
(1)求直線l的方程;
(2)求直線l被圓:x2+(y-11)2=25所截得的弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.函數(shù)f(x)=lg(2-x)定義域為(-∞,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.(1)求值:${8^{\frac{2}{3}}}+{2^{{{log}_2}3}}+{({\frac{1}{4}})^0}$;
(2)已知${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}=4$,求x+x-1的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知橢圓的焦點為(-1,0)和(1,0).點P(2,0)在橢圓上,則橢圓的方程為$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.某商品的進價是40元/kg,現(xiàn)在的售價是60元/kg,每周可賣出300kg.根據(jù)市場調(diào)查,該商品每漲價1元,每周要少賣出10kg;每降價1元,每周可多賣出20kg.如果要對該商品漲價,那么漲價的范圍是多少才能使每周的利潤不少于6240元?如果要對該商品降價,那么降價的范圍是多少才能使每周的利潤不少于6240元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.定義在R上的函數(shù)f(x)滿足:對于任意x,都有f(x)=f(x-1)+f(x+1),則f(x)的一個周期為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知角α的終邊在直線y=x上,求sinα+cosα的值.

查看答案和解析>>

同步練習冊答案