4.已知函數(shù)$f(x)=1+x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+…-\frac{{{x^{2016}}}}{2016}$(其中x>0),g(x)=lnx+x-3,設(shè)函數(shù)F(x)=f(x-1)g(x+1),且函數(shù)F(x)的零點(diǎn)都在區(qū)間[a,b](a<b,a∈Z,b∈Z)內(nèi),則b-a的最小值為( 。
A.2B.3C.4D.5

分析 令F(x)=0,即為f(x-1)=0或g(x+1)=0,分別判斷函數(shù)g(x),f(x)的單調(diào)性,判斷g(1),g(2);f(-1),f(0)的符號(hào),結(jié)合零點(diǎn)存在定理,即可得到a,b,進(jìn)而得到最小值.

解答 解:函數(shù)F(x)=f(x-1)g(x+1),
可得F(x)=0,即為f(x-1)=0或g(x+1)=0,
由g(x+1)=ln(x+1)+x-2,
可得y=g(x+1)在(0,+∞)遞增,
且g(1)=ln1-2=-2<0,g(2)=ln3>0,
可得g(x+1)的零點(diǎn)介于(0,1);
由函數(shù)$f(x)=1+x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+…-\frac{{{x^{2016}}}}{2016}$的導(dǎo)數(shù)為
f′(x)=1-x+x2-x3+…-x2015
=$\frac{1-(-x)^{2016}}{1+x}$>0,可得f(x)在x>0遞增,
且y=f(x-1)遞增,由f(-1)=1-1-$\frac{1}{2}$-$\frac{1}{3}$-…-$\frac{1}{2016}$<0,
f(0)=1>0,f(1)>0,f(2)>0,
介于y=f(x-1)的零點(diǎn)介于(-1,0),
則F(x)的零點(diǎn)都在區(qū)間[-1,1]內(nèi),
則b-a的最小值為2.
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)的零點(diǎn)的判斷,注意運(yùn)用轉(zhuǎn)化思想和函數(shù)的零點(diǎn)存在定理,考查判斷和運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.直線y=kx+2(k∈R)不過第三象限,則斜率k的取值范圍是(-∞,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.對(duì)于函數(shù)y=f(x),任意x∈R,均有f(x+2)=$\frac{1}{f(x)}$,當(dāng)x∈(0,2]時(shí),f(x)=x.
(1)當(dāng)x∈(2,4]時(shí),求f(x)的解析式;
(2)若f(m)=1,求m的值;
(3)求和:f(1)+f(2)+f(3)+…+f(2015).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知a>0,b>0,a+2b=1,則$\frac{1}{3a+4b}+\frac{1}{a+3b}$取到最小值為$\frac{4\sqrt{2}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=xlnx-$\frac{a}{2}$x2-x+a(a∈R)在定義域內(nèi)有兩個(gè)不同的極值點(diǎn)
(1)求a的取值范圍;
(2)記兩個(gè)極值點(diǎn)x1,x2,且x1<x2,已知λ>0,若不等式x1•x2λ>e1+λ恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中x=0是極值點(diǎn)的函數(shù)是( 。
A.f(x)=-x3B.f(x)=x2C.f(x)=sinx-xD.f(x)=$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={y|y=x${\;}^{\frac{2}{3}}$,x≥1},B={y|y=($\frac{1}{2}$)x,x≥-1},則A∩B=(  )
A.{y|1≤y≤2}B.{y|y≥2}C.{y|$\frac{1}{2}$≤y≤1}D.{y|y≥1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線方程是y=±2x,則雙曲線的離心率為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某高中地處市區(qū),學(xué)校規(guī)定家到學(xué)校的路程在10里以內(nèi)的學(xué)生可以走讀,因交通便利,所以走讀生人數(shù)很多.該校學(xué)生會(huì)先后5次對(duì)走讀生的午休情況作了統(tǒng)計(jì),得到如下資料:
①若把家到學(xué)校的距離分為五個(gè)區(qū)間:[0,2)、[2,4)、[4,6)、[6,8)、[8,10),午休的走讀生的分布情況如頻率分布直方圖所示;
②走讀生是否午休與下午開始上課的時(shí)間有著密切的關(guān)系. 5次調(diào)查結(jié)果的統(tǒng)計(jì)表如表:
下午開始
上課時(shí)間
2:102:202:302:402:50
平均每天
午休人數(shù)
250350500650750
(1)若隨機(jī)地調(diào)查一位午休的走讀生,估計(jì)家到學(xué)校的路程(單位:里)在[2,6)的概率是多少?
(2)如果把下午開始上課時(shí)間2:10作為橫坐標(biāo)0,然后上課時(shí)間每推遲10分鐘,橫坐標(biāo)x增加1,并以平均每天午休人數(shù)作為縱坐標(biāo)y,試列出x與y的統(tǒng)計(jì)表,并根據(jù)表中的數(shù)據(jù)求平均每天午休人數(shù)$\widehat{y}$與上課時(shí)間x之間的線性回歸方程$\widehat{y}$=bx+a;
(3)預(yù)測(cè)當(dāng)下午上課時(shí)間推遲到3:00時(shí),家距學(xué)校的路程在6里路以上的走讀生中約有多少人午休?
(注:線性回歸直線方程系數(shù)公式b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.)

查看答案和解析>>

同步練習(xí)冊(cè)答案