A. | 1 | B. | 2 | C. | 4 | D. | 5 |
分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,求出Z的取值范圍即可.
解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由Z=x+y得y=-x+Z,平移直線y=-x+Z,
由圖象可知當(dāng)直線y=-x+Z經(jīng)過(guò)點(diǎn)B(0,1)時(shí),
直線y=-x+Z的截距最小,此時(shí)Z最。钚閆=1,
線y=-x+Z的截距最大,此時(shí)Z最大.
由$\left\{\begin{array}{l}{x=2}\\{y=1+x}\end{array}\right.$,
解$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,即A(2,3),
代入目標(biāo)函數(shù)Z=x+y得Z=2+3=5.
則1≤Z<5,
故Z=5時(shí),取不到,
故選:D.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)條件求出Z的取值范圍是解決本題的關(guān)鍵.注意利用數(shù)形結(jié)合進(jìn)行求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-$\frac{1}{4}$,+∞) | B. | (-∞,-$\frac{1}{4}$) | C. | (0,+∞) | D. | (-∞,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | 1 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 36 | C. | 48 | D. | 60 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1 | B. | $\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{5}$=1 | C. | $\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{80}$=1 | D. | $\frac{{x}^{2}}{80}$-$\frac{{y}^{2}}{20}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com