4.在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,已知a=2,c=3,cosB=$\frac{1}{4}$,則sinC的值為$\frac{3\sqrt{6}}{8}$.

分析 根據(jù)題意和余弦定理列出方程求出b的值,由余弦定理求出cosB,由B的范圍和平方關(guān)系求出sinC的值.

解答 解:在△ABC中,∵a=2,c=3,cosB=$\frac{1}{4}$,
∴由余弦定理得,b2=a2+c2-2ac•cosB
=4+9-$2×2×3×\frac{1}{4}$=10,則b=$\sqrt{10}$,
∴cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{4+10-9}{2×2×\sqrt{10}}$=$\frac{\sqrt{10}}{8}$,
∵0<C<π,∴sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{3\sqrt{6}}{8}$,
故答案為:$\frac{3\sqrt{6}}{8}$.

點(diǎn)評(píng) 本題考查了余弦定理,平方關(guān)系的應(yīng)用,以及方程思想,考查化簡、計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知點(diǎn)P(2,$\sqrt{3}$),直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\sqrt{3}t}\\{y=\sqrt{3}+t}\\{\;}\end{array}\right.$(t為參數(shù)).以平面直角坐標(biāo)系坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=4cos(θ-$\frac{π}{3}$).
(1)求曲線C的直角坐標(biāo)方程和直線l的極坐標(biāo)方程;
(2)設(shè)曲線與直線l相交于A、B兩點(diǎn),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.橢圓x2+$\frac{y^2}{b^2}$=1(|b|<1)的左焦點(diǎn)為F,A為上頂點(diǎn),B為長軸上任意一點(diǎn),且B在原點(diǎn)O的右側(cè),若△FAB的外接圓圓心為P(m,n),且m+n>0,橢圓離心率的范圍為( 。
A.$({0,\frac{{\sqrt{2}}}{2}})$B.$({0,\frac{1}{2}})$C.$({\frac{1}{2},1})$D.$({\frac{{\sqrt{2}}}{2},1})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.空間直角坐標(biāo)系中點(diǎn)P(1,3,5)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)P′的坐標(biāo)是( 。
A.(-1,-3,-5)B.(-1,-3,5)C.(1,-3,5)D.(-1,3,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.有一段“三段論”推理是這樣的:對(duì)于定義域內(nèi)可導(dǎo)函數(shù)f(x),如果f′(x)>0,那么f(x)在定義域內(nèi)單調(diào)遞增;因?yàn)楹瘮?shù)f(x)=-$\frac{1}{x}$滿足在定義域內(nèi)導(dǎo)數(shù)值恒正,所以,f(x)=-$\frac{1}{x}$在定義域內(nèi)單調(diào)遞增,以上推理中( 。
A.大前提錯(cuò)誤B.小前提錯(cuò)誤C.推理形式錯(cuò)誤D.結(jié)論正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.根據(jù)如表樣本數(shù)據(jù):
x12345
y210-1-2
得到的回歸方程$\stackrel{∧}{y}$=bx+a,則( 。
A.a<0,b<0B.a<0,b>0C.a>0,b>0D.a>0,b<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,在正三角形ABC中,D、E、F分別為各邊的中點(diǎn),H、G、I、J分別為AD、AF、BE、DE的中點(diǎn),則將△ABC沿DE、EF、DF折成三棱錐后,則異面直線GH與IJ所成的角的大小為(  )
A.$\frac{π}{4}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.${∫}_{-2}^{2}$(sinx+ex)dx=e2-e-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.(x3-$\frac{1}{x}$)4的展開式中x8的系數(shù)為-4.(用數(shù)字填寫答案)

查看答案和解析>>

同步練習(xí)冊(cè)答案