【題目】某企業(yè)生產(chǎn)的A產(chǎn)品被檢測出其中一項(xiàng)質(zhì)量指標(biāo)存在問題,該企業(yè)為了檢查生產(chǎn)A產(chǎn)品的甲、乙兩條流水線的生產(chǎn)情況,隨機(jī)地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取50件產(chǎn)品作為樣本,測出它們的這一項(xiàng)質(zhì)量指標(biāo)值.若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品,表格是甲流水線樣本的頻數(shù)分布表,圖形是乙流水線樣本的頻率分布直方圖.
(1)根據(jù)圖形,估計(jì)乙流水線生產(chǎn)的A產(chǎn)品的該質(zhì)量指標(biāo)值的中位數(shù);
(2)設(shè)某個(gè)月內(nèi)甲、乙兩條流水線均生產(chǎn)了3000件產(chǎn)品,若將頻率視為概率,則甲、乙兩條流水線生產(chǎn)出的合格產(chǎn)品分別約為多少件?
【答案】(1);(2),.
【解析】
(1)前三組的頻率之和為0.46,中位數(shù)位于第四組,設(shè)中位數(shù)為,列出方程級求出中位數(shù).
(2)先分別求出甲、乙流水線生產(chǎn)的產(chǎn)品為合格品的概率,由此能求出某個(gè)月內(nèi)甲、乙兩條流水線均生產(chǎn)的3000件產(chǎn)品中合格品件數(shù).
解:(1)前三組的頻率之和為
中位數(shù)位于第四組,設(shè)中位數(shù)為,
則,解得中位數(shù).
(2)由題意知甲流水線隨機(jī)抽取的50件產(chǎn)品中
合格品有:件,
則甲流水線生產(chǎn)的產(chǎn)品為合格品的概率是,
乙流水線生產(chǎn)的產(chǎn)品為合格品的概率是,
某個(gè)月內(nèi)甲、乙兩條流水線均生產(chǎn)的3000件產(chǎn)品中合格品件數(shù)分別約為:
,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的圓心為(1,1),直線與圓C相切.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若直線過點(diǎn)(2,3),且被圓C所截得的弦長為2,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在梯形中,,,,,是的中點(diǎn),是與的交點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且,如圖2.
(1)證明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了適應(yīng)高考改革,某中學(xué)推行“創(chuàng)新課堂”教學(xué).高一平行甲班采用“傳統(tǒng)教學(xué)”的教學(xué)方式授課,高一平行乙班采用“創(chuàng)新課堂”的教學(xué)方式授課,為了比較教學(xué)效果,期中考試后,分別從兩個(gè)班中各隨機(jī)抽取名學(xué)生的成績進(jìn)行統(tǒng)計(jì)分析,結(jié)果如下表:(記成績不低于分者為“成績優(yōu)秀”)
分?jǐn)?shù) | |||||||
甲班頻數(shù) | |||||||
乙班頻數(shù) |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表,并判斷是否有以上的把握認(rèn)為“成績優(yōu)秀與教學(xué)方式有關(guān)”?
甲班 | 乙班 | 總計(jì) | |
成績優(yōu)秀 | |||
成績不優(yōu)秀 | |||
總計(jì) |
(2)在上述樣本中,學(xué)校從成績?yōu)?/span>的學(xué)生中隨機(jī)抽取人進(jìn)行學(xué)習(xí)交流,求這人來自同一個(gè)班級的概率.
參考公式:,其中.
臨界值表
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正實(shí)數(shù)x,y滿足等式.
(Ⅰ)試將y表示為x的函數(shù),并求出定義域和值域;
(Ⅱ)是否存在實(shí)數(shù)m,使得函數(shù)有零點(diǎn)?若存在,求出m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2015年1月至2017年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是()
A. 年接待游客量逐年增加
B. 各年的月接待游客量高峰期在8月
C. 2015年1月至12月月接待游客量的中位數(shù)為30萬人
D. 各年1月至6月的月接待游客量相對于7月至12月,波動(dòng)性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】臨川一中實(shí)驗(yàn)學(xué)校坐落在撫州火車站附近,在校區(qū)東邊(如圖),有一直徑為8米的半圓形空地,現(xiàn)計(jì)劃移植一古樹,但需要有輔助光照.半圓周上的處恰有一可旋轉(zhuǎn)光源滿足古樹生長的需要,該光源照射范圍是,點(diǎn)在直徑上,且.
(1)若,求的長;
(2)設(shè),求該空地種植古樹的最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了變廢為寶,節(jié)約資源,新上了一個(gè)從生活垃圾中提煉生物柴油的項(xiàng)目.經(jīng)測算該項(xiàng)目月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可以近似地表示為:,且每處理一噸生活垃圾,可得到能利用的生物柴油價(jià)值為元,若該項(xiàng)目不獲利,政府將給予補(bǔ)貼.
(1)當(dāng)時(shí),判斷該項(xiàng)目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補(bǔ)貼多少元才能使該項(xiàng)目不虧損?
(2)該項(xiàng)目每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角三棱柱中,、分別為、的中點(diǎn),,.
(1)求證:平面;
(2)求證:平面平面;
(3)若直線和平面所成角的正弦值等于,求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com