分析 (1)化簡函數(shù)f(x),根據(jù)x的取值范圍求出f(x)的最值;
(2)由題意求出C的值,再利用向量$\overrightarrow{m}$與$\overrightarrow{n}$共線,以及正弦、余弦定理列方程組,求出a、b的值.
解答 解:(1)函數(shù)f(x)=2cos2x+2$\sqrt{3}$sinxcosx
=2•$\frac{1+cos2x}{2}$+$\sqrt{3}$•sin2x
=cos2x+$\sqrt{3}$sin2x+1
=2sin(2x+$\frac{π}{6}$)+1,
由0≤x≤$\frac{π}{2}$,得$\frac{π}{6}$≤2x+$\frac{π}{6}$≤$\frac{7π}{6}$;
所以-$\frac{1}{2}$≤sin(2x+$\frac{π}{6}$)≤1,
所以函數(shù)f(x)在x∈[0,$\frac{π}{2}$]上的最大值是f(x)max=3,
最小值是f(x)min=0;
(2)由$f(C)=2sin(2C+\frac{π}{6})+1=2$,得$sin(2C+\frac{π}{6})=\frac{1}{2}$;
而C∈(0,π),所以$2C+\frac{π}{6}∈({\frac{π}{6},\frac{13π}{6}})$,
所以$2C+\frac{π}{6}=\frac{5}{6}π$,
解得$C=\frac{π}{3}$;
因?yàn)橄蛄?\overrightarrow{m}$與向量$\overrightarrow{n}$共線,所以$\frac{sinA}{sinB}=\frac{1}{2}$;
由正弦定理得:$\frac{sinA}{sinB}$=$\frac{a}$=$\frac{1}{2}$①,
由余弦定理得:c2=a2+b2-2abcosC,即a2+b2-ab=9②;
由①②解得$a=\sqrt{3},b=2\sqrt{3}$.
點(diǎn)評(píng) 本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,也考查了正弦、余弦定理的應(yīng)用問題,考查了平面向量的應(yīng)用問題,是綜合性題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 空間中,一組對(duì)邊平行且相等的四邊形是一定是平行四邊形 | |
B. | 同一平面的兩條垂線一定共面 | |
C. | 三角形一定是平面圖形 | |
D. | 過一條直線有且只有一個(gè)平面與已知平面垂直 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=$\sqrt{1+x}+\sqrt{1-x}$ | B. | f(x)=x3-1 | C. | f(x)=$\sqrt{1+x}-\sqrt{1-x}$ | D. | f(x)=-$\frac{1}{x^2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com