分析 求出函數(shù)的導(dǎo)數(shù),確定函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最小值即可.
解答 解:f(x)的定義域是(-$\frac{1}{2}$,+∞),
f′(x)=$\frac{2x-1}{2x+1}$,
令f′(x)>0,解得:x>$\frac{1}{2}$,
令f′(x)<0,解得:x<$\frac{1}{2}$,
∴f(x)在(-$\frac{1}{2}$,$\frac{1}{2}$)遞減,在($\frac{1}{2}$,+∞)遞增,
∴f(x)最小值=f(x)極小值=f($\frac{1}{2}$)=$\frac{1}{2}$-ln2.
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 2014 | D. | 2015 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{2}{3}$ | B. | $-\frac{3}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com