分析 (1)根據(jù)函數(shù)奇偶性的定義求出a的值即可;
(2)通過定義證明函數(shù)f(x)在區(qū)間[lna,+∞)上是增函數(shù),求出函數(shù)的最小值,從而求出滿足條件的集合即可.
解答 解:(1)函數(shù)f(x)=$\frac{{e}^{x}}{a}+\frac{a}{{e}^{x}}$(a>0)是R上的偶函數(shù),f(-x)=f(x),
即$\frac{1}{a}$(ex-e-x)=a($\frac{1}{{e}^{-x}}$-$\frac{1}{{e}^{x}}$)=a(ex-e-x)在R恒成立,
∴$\frac{1}{a}$=a,解得:a=1,(a>0),
(2)在[lna,+∞)上任取x1,x2,且x1<x2,則
f(x1)-f(x2)=$\frac{1}{a}$(${e}^{{x}_{1}}$-${e}^{{x}_{2}}$)-a$\frac{{e}^{{x}_{1}}{-e}^{{x}_{2}}}{{e}^{{x}_{1}}{•e}^{{x}_{2}}}$=(${e}^{{x}_{1}}$-${e}^{{x}_{2}}$)•$(\frac{{e}^{{x}_{1}{+x}_{2}}{-a}^{2}}{a{•e}^{{x}_{1}{+x}_{2}}})$,
∵y=ex是增函數(shù),lna≤x1<x2,
∴${e}^{{x}_{1}}$-${e}^{{x}_{2}}$<0,∴x1+x2>2lna=lna2,
∴${e}^{{x}_{1}{+x}_{2}}$>${e}^{l{na}^{2}}$=a2,∴${e}^{{x}_{1}{+x}_{2}}$-a2>0,
∵a•${e}^{{x}_{1}{+x}_{2}}$>0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
∴函數(shù)f(x)在[lna,+∞)上是增函數(shù),
∴f(x)min=f(lna)=$\frac{{e}^{lna}}{a}$+$\frac{a}{{e}^{lna}}$=2,
∴函數(shù)f(x)在[lna,+∞)上所有下界構(gòu)成的集合是(-∞,2].
點評 本題考查了函數(shù)的奇偶性、單調(diào)性問題,考查函數(shù)單調(diào)性的定義的應(yīng)用,是一道中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com