(本小題14分)已知△ABC的角A、B、C所對(duì)的邊分別為a,b,c,設(shè)向量,向量,向量p=(b-2,a-2)

(1)若,求證△ABC為等腰三角形;

(2)若,邊長(zhǎng)c=2, ,  求 △ABC的面積.

 

【答案】

(1)見解析。(2)

【解析】

試題分析:(1)證明:∵m∥n,∴asinA=bsinB.

由正弦定理得a2=b2,a=b,∴△ABC為等腰三角形    ……………………6分

(2)∵m⊥p,∴m·p=0.即a(b-2)+b(a-2)=0

∴a+b=ab.       ……………………8分

由余弦定理得4=a2+b2-ab=(a+b)2-3ab

即(ab)2-3ab-4=0,∴ab=4或ab=-1(舍)

∴SABC=absinC=×4×sin=……………………14分

考點(diǎn):本題考查向量平行、垂直的充要條件以及正弦定理、余弦定理和三角形的面積公式。

點(diǎn)評(píng):三角函數(shù)和向量相結(jié)合往往是第一道大題,一般較為簡(jiǎn)單,應(yīng)該是必得分的題目。而有些同學(xué)在學(xué)習(xí)中認(rèn)為這類題簡(jiǎn)單,自己一定會(huì),從而忽略了對(duì)它的練習(xí),因此導(dǎo)致考試時(shí)不能得滿分,甚至不能得分。因此我們?cè)谄匠S?xùn)練的時(shí)候就要要求自己“會(huì)而對(duì),對(duì)而全”。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題14分)已知圓點(diǎn),過點(diǎn)作圓的切線為切點(diǎn).

(1)求所在直線的方程;

(2)求切線長(zhǎng);

(3)求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市高三第四次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題14分)

已知等比數(shù)列滿足,且,的等差中項(xiàng).

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)若,,求使  成立的正整數(shù)的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都市高新區(qū)高三2月月考理科數(shù)學(xué)試卷(解析版 題型:解答題

(本小題14分)已知函數(shù),設(shè)。

(Ⅰ)求F(x)的單調(diào)區(qū)間;

(Ⅱ)若以圖象上任意一點(diǎn)為切點(diǎn)的切線的斜率 恒成立,求實(shí)數(shù)的最小值。

(Ⅲ)是否存在實(shí)數(shù),使得函數(shù)的圖象與的圖象恰好有四個(gè)不同的交點(diǎn)?若存在,求出的取值范圍,若不存在,說名理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年陜西省高三上學(xué)期月考理科數(shù)學(xué) 題型:解答題

(本小題14分)已知函數(shù)的圖像與函數(shù)的圖像關(guān)于點(diǎn)

 

對(duì)稱

(1)求函數(shù)的解析式;

(2)若,在區(qū)間上的值不小于6,求實(shí)數(shù)a的取值范圍.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年四川省高三2月月考數(shù)學(xué)理卷 題型:解答題

(本小題14分)

已知函數(shù)的圖像在[a,b]上連續(xù)不斷,定義:

,其中表示函數(shù)在D上的最小值,表示函數(shù)在D上的最大值,若存在最小正整數(shù)k,使得對(duì)任意的成立,則稱函數(shù)上的“k階收縮函數(shù)”

(1)若,試寫出,的表達(dá)式;

(2)已知函數(shù)試判斷是否為[-1,4]上的“k階收縮函數(shù)”,

如果是,求出對(duì)應(yīng)的k,如果不是,請(qǐng)說明理由;

已知,函數(shù)是[0,b]上的2階收縮函數(shù),求b的取值范圍

 

查看答案和解析>>

同步練習(xí)冊(cè)答案