12.設(shè)全集U=R,集合A={x|x2-3x-4<0},B={x|log2(x-1)<2},則A∩B=(1,4),A∪B=(-1,5),CRA=(-∞,-1]∪[4,+∞).

分析 求出A與B中不等式的解集確定出A與B,找出A與B的交集,并集,求出A的補(bǔ)集即可.

解答 解:由A中不等式變形得:(x-4)(x+1)<0,
解得:-1<x<4,即A=(-1,4),
由B中不等式變形得:log2(x-1)<2=log24,得到0<x-1<4,
解得:1<x<5,即B=(1,5),
∴A∩B=(1,4),A∪B=(-1,5),∁RA=(-∞,-1]∪[4,+∞).
故答案為:(1,4);(-1,5);(-∞,-1]∪[4,+∞)

點(diǎn)評 此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若離散型隨機(jī)變量X的分布列為 則X的數(shù)學(xué)期望E(X)=( 。
X01
P $\frac{a}{2}$$\frac{{a}^{2}}{2}$
A.2B.2或$\frac{1}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若函數(shù)f (x)=ex+4x-kx在區(qū)間($\frac{1}{2}$,+∞)上是增函數(shù),則實(shí)數(shù)k的最大值是( 。
A.2+eB.2+$\sqrt{e}$C.4+eD.4ln2+$\sqrt{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖所示的程序框圖,若輸入n=2015,則輸出的s值為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知曲線C的參數(shù)方程是$\left\{\begin{array}{l}x=\sqrt{3}t\\ y={t^2}+1\end{array}\right.$(t為參數(shù)),點(diǎn)M(3,a)在曲線C上,則a=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=|x2-a|+x2+kx,(a為常數(shù)且0<a<4).
(1)若a=k=1,求不等式f(x)>2的解集;
(2)若函數(shù)f(x)在(0,2)上有兩個(gè)零點(diǎn)x1,x2.求$\frac{1}{x_1}$+$\frac{1}{x_2}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.過橢圓$\frac{x^2}{25}+\frac{y^2}{16}$=1上一點(diǎn)P作圓(x-3)2+y2=1的兩條切線,切點(diǎn)分別為A、B,則∠APB的最大值為(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知復(fù)數(shù)z=(a2+a-2)+(a-2)i(a∈R),則“a=1”是“z為純虛數(shù)”的(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.P是△ABC內(nèi)一點(diǎn),且滿足條件$\overrightarrow{AP}$+2$\overrightarrow{BP}$+3$\overrightarrow{CP}$=$\overrightarrow{0}$,設(shè)Q為$\overrightarrow{CP}$延長線與AB的交點(diǎn),令$\overrightarrow{CP}$=p,用p表示$\overrightarrow{CQ}$.

查看答案和解析>>

同步練習(xí)冊答案