2.已知函數(shù)f(x)=Asin(ωx+φ)+b(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)若f(α)=1+$\sqrt{3}$,且α∈[0,$\frac{π}{2}$],求α的值.

分析 (1)由函數(shù)的最大、最小值求出b和A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)的解析式.
(2)由已知可解得:sin(α+$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$,可得解得:α=2kπ+$\frac{π}{6}$,α=2kπ+$\frac{π}{2}$,k∈Z,結(jié)合范圍α∈[0,$\frac{π}{2}$],即可得解.

解答 解:(1)由函數(shù)的圖象可得A=$\frac{3-(-1)}{2}$=2,b=3-A=1,
T=$\frac{2π}{ω}$=[$\frac{π}{3}$-(-$\frac{2π}{3}$)]=2π,∴ω=1.
再根($\frac{π}{3}$,3)在函數(shù)圖象上,可得2sin($\frac{π}{3}$+φ)+1=3,由五點(diǎn)法作圖求得φ=$\frac{π}{6}$,
∴f(x)=2sin(x+$\frac{π}{6}$)+1.
(2)∵f(α)=1+$\sqrt{3}$,
∴2sin(α+$\frac{π}{6}$)+1=1$+\sqrt{3}$.解得:sin(α+$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$,可得:α+$\frac{π}{6}$=2kπ+$\frac{π}{3}$,或α+$\frac{π}{6}$=2kπ+$\frac{2π}{3}$,k∈Z
∴解得:α=2kπ+$\frac{π}{6}$,α=2kπ+$\frac{π}{2}$,k∈Z,
∵α∈[0,$\frac{π}{2}$],
∴解得:$α=\frac{π}{6}$,或$\frac{π}{2}$.

點(diǎn)評(píng) 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,正弦函數(shù)的圖象和性質(zhì),由函數(shù)的最大、最小值求出k和A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知數(shù)列{an}的首項(xiàng)a1=2,數(shù)列{bn}為等比數(shù)列,且${b_n}=\frac{{{a_{n+1}}}}{a_n}$,若b10b11=2,則a21=( 。
A.29B.210C.211D.212

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知直線x=$\frac{π}{4}$和x=$\frac{5π}{4}$是函數(shù)f(x)=2sin(ωx+φ)(ω>0,0<φ<π)圖象的兩條相鄰的對(duì)稱軸,則φ=( 。
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知$-\frac{π}{4}$和$\frac{π}{4}$是函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的相鄰的兩個(gè)零點(diǎn).
(Ⅰ)求f(x)的解析式;
(Ⅱ)在△ABC中,若sinBsinCcosA=sin2A,求函數(shù)f(A)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.寫出下面各數(shù)列的一個(gè)通項(xiàng)公式:
(1)3,5,7,9,…;
(2)$\frac{1}{2}$,$\frac{3}{4}$,$\frac{7}{8}$,$\frac{15}{16}$,$\frac{31}{32}$,…;
(3)-1,$\frac{3}{2}$,-$\frac{1}{3}$,$\frac{3}{4}$,-$\frac{1}{5}$,$\frac{3}{6}$…;
(4)3,33,333,3333,….

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.拋物線y2=-4px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,則p表示( 。
A.F到l的距離B.F到y(tǒng)軸的距離C.F點(diǎn)的橫坐標(biāo)D.F到l的距離的$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若數(shù)列{an}是正項(xiàng)遞減等比數(shù)列,Tn表示其前n項(xiàng)的積,且T8=T12,則當(dāng)Tn取最大值時(shí),n的值等于(  )
A.9B.10C.11D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)等比數(shù)列{an}的公比為q,若a5=4,a8=32,
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足bn=log2an,數(shù)列{bn}的前n項(xiàng)和為Sn,數(shù)列{$\frac{{S}_{n}}{{n}^{2}}$}的前n項(xiàng)和為Tn.求證:Tn≤$\frac{n}{2}$-$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知θ為銳角,sin2θ=-$\frac{7}{9}$,則sin($\frac{π}{4}$+θ)=(  )
A.$±\frac{1}{3}$B.$\frac{1}{3}$C.-$\frac{1}{3}$D.±$\frac{\sqrt{2}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案