17.寫出下面各數(shù)列的一個(gè)通項(xiàng)公式:
(1)3,5,7,9,…;
(2)$\frac{1}{2}$,$\frac{3}{4}$,$\frac{7}{8}$,$\frac{15}{16}$,$\frac{31}{32}$,…;
(3)-1,$\frac{3}{2}$,-$\frac{1}{3}$,$\frac{3}{4}$,-$\frac{1}{5}$,$\frac{3}{6}$…;
(4)3,33,333,3333,….

分析 根據(jù)數(shù)列項(xiàng)的規(guī)律進(jìn)行求解即可.

解答 解:(1)3,5,7,9,…,故an=2n+1,
(2)$\frac{1}{2}$,$\frac{3}{4}$,$\frac{7}{8}$,$\frac{15}{16}$,$\frac{31}{32}$,…,故an=$\frac{{2}^{n}-1}{{2}^{n}}$,n≥1
(3)-1,$\frac{3}{2}$,-$\frac{1}{3}$,$\frac{3}{4}$,-$\frac{1}{5}$,$\frac{3}{6}$…故an=$\frac{1+2(-1)^{n}}{n}$;
(4)數(shù)列3,33,333,3333,…的一個(gè)通項(xiàng)公式為an=$\frac{1}{3}$(10n-1).

點(diǎn)評(píng) 本題考查了數(shù)列的通項(xiàng)公式的求法,考查了觀察能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.某程序框圖如圖所示,該程序運(yùn)行后輸出的S的值是3018;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)$({A>0,ω>0,|φ|<\frac{π}{2}})$在某一個(gè)周期的圖象時(shí),列表并填入的部分?jǐn)?shù)據(jù)如表:
x$\frac{2}{3}$πx1$\frac{8}{3}$πx2x3
ωx+φ0$\frac{π}{2}$π$\frac{3}{2}$π
Asin(ωx+φ)020-20
(I)求x1,x2,x3的值及函數(shù)f(x)的表達(dá)式;
(Ⅱ)若對(duì)任意的x1,x2∈[0,π],都有|f(x1)-f(x2)|<t恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)命題p:方程$\frac{x^2}{1-m}+\frac{y^2}{m+4}=1$所表示的軌跡是雙曲線;
命題q:函數(shù)f(x)=3x2+2mx+(m+6)有兩個(gè)零點(diǎn).
當(dāng)“p∧q”為假命題,“p∨q”為真命題時(shí),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.有一地球儀的半徑為30cm,地球儀上標(biāo)有A、B兩地,A地北緯45°,東經(jīng)40°,B地北緯45°,西經(jīng)50°.
(1)求地球儀的表面積與體積;
(2)求地球儀上A、B兩地所在緯線圈的半徑;
(3)求地球儀上A、B兩點(diǎn)的球面距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=Asin(ωx+φ)+b(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)若f(α)=1+$\sqrt{3}$,且α∈[0,$\frac{π}{2}$],求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知{an}是遞增的等差數(shù)列,a2,a4是方程x2-10x+24=0的根.
(1)求{an}的通項(xiàng)公式;
(2)求數(shù)列{$\frac{{a}_{n}}{{2}^{n+1}}$}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知實(shí)數(shù)a,b滿足2a+1+2b+1=4a+4b,則a+b的取值范圍是(-∞,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.畫出方程x4-x2=y4-y2的曲線C,并回答下列問題:
(1)若點(diǎn)A(m,$\sqrt{2}$)在曲線C上,求m的值;
(2)若直線y=a(a∈R)與曲線C分別有一個(gè)、兩個(gè)、三個(gè)、四個(gè)交點(diǎn),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案