9.已知M⊆{1,2,3,4,5},若M中所有元素之和稱為M的“容量”(規(guī)定空集容量為0),若M的容量為奇(偶)數(shù),則稱M為奇(偶)子集.求證:
(1)M的奇子集與偶子集個(gè)數(shù)相等:
(2)奇子集與偶子集容量相等.

分析 ①設(shè)S為M的奇子集,根據(jù)奇子集和偶子集的定義,得到奇子集和偶子集之間的關(guān)系,分析即可證得結(jié)論;
②求得奇子集的容量之和,從而得到偶子集的容量之和,即可得到結(jié)論.

解答 解:①設(shè)S為M的奇子集,令T是偶子集,A→T是奇子集的集到偶子集的一一對應(yīng),而且每個(gè)偶子集T,均恰有一個(gè)奇子集與之對應(yīng),故T的奇子集與偶子集個(gè)數(shù)相等,正確;
②對任一i(1≤i≤5),含i的子集共有24個(gè),M的奇子集與偶子集個(gè)數(shù)相等可知,
在i≠1時(shí),這24個(gè)子集中有一半是奇子集,
在i=1時(shí),同樣可得其中有一半是奇子集,
于是在計(jì)算奇子集容量之和時(shí),奇子集容量之和是$\sum_{i=1}^{5}$23i=120,
根據(jù)上面所說,這也是偶子集的容量之和,兩者相等,
故M的所有奇子集的容量之和等于所有偶子集的容量之和.

點(diǎn)評 本題考查集合的子集,是新定義的題型,關(guān)鍵是正確理解奇、偶子集與容量的概念.在解答過程當(dāng)中充分體現(xiàn)了新定義問題的規(guī)律、列舉的方法還有問題轉(zhuǎn)化的思想.值得同學(xué)們體會(huì)反思.屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.學(xué)校游園活動(dòng)有這樣一個(gè)游戲:甲箱子里裝有3個(gè)白球,2個(gè)黑球,乙箱子里裝有1個(gè)白球,2個(gè)黑球,這些球除了顏色外完全相同,每次游戲從這兩個(gè)箱子里各隨機(jī)摸出2個(gè)球,若摸出的白球不少于2個(gè),則獲獎(jiǎng)(每次游戲結(jié)束后將球放回原箱).
(1)求在1次游戲中:
①摸出3個(gè)白球的概率.
②獲獎(jiǎng)的概率.
(2)求在3次游戲中獲獎(jiǎng)次數(shù)X的分布列.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.一扇形的周長為20cm,當(dāng)扇形的圓心角α等于多少時(shí),這個(gè)扇形的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知f(x)=x2-1,g(x)=3x+1,則g[f(0)]=-2,f[g(x)]=9x2+6x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知集合A={-3,-1,2},B={$\sqrt{a}$},且B⊆A,則實(shí)數(shù)a的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知C${\;}_{6}^{x}$+C${\;}_{6}^{x-1}$=C${\;}_{7}^{x-3}$,則x=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-{a^2}x+\frac{1}{2}a$(a∈R).
(Ⅰ)當(dāng)a=1時(shí),x∈[-1,2],求f(x)的最值.
(Ⅱ)若對任意x∈[0,+∞),有f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)為F1(-1,0),且長軸長是短軸長的$\sqrt{2}$倍.
(1)求橢圓M的方程;
(2)若斜率為$\frac{1}{2}$的直線l與橢圓M位于x軸上方的部分交于C,D兩點(diǎn),過C,D兩點(diǎn)分別做CE,DF垂直x軸于E,F(xiàn)兩點(diǎn),若四邊形CEFD的面積為$\frac{2\sqrt{2}}{3}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.拋物線y2=2px(p>0)的焦點(diǎn)為F,過點(diǎn)M(p,0),傾斜角為45°的直線與拋物線交于A、B兩點(diǎn),若|AF|+|BF|=10,則拋物線的準(zhǔn)線方程為( 。
A.x+1=0B.2x+1=0C.2x+3=0D.4x+3=0

查看答案和解析>>

同步練習(xí)冊答案