10.(1)計(jì)算$\frac{2{A}_{8}^{5}+7{A}_{8}^{4}}{{A}_{8}^{8}-{A}_{9}^{5}}$
(2)求證:A${\;}_{n+1}^{m}$=mA${\;}_{n}^{m-1}$+A${\;}_{n}^{m}$.

分析 (1)根據(jù)排列數(shù)的公式進(jìn)行化簡、計(jì)算即可;
(2)利用排列數(shù)的公式進(jìn)行證明即可.

解答 解:(1)$\frac{2{A}_{8}^{5}+7{A}_{8}^{4}}{{A}_{8}^{8}-{A}_{9}^{5}}$=$\frac{2×8×7×6×5×4+7×8×7×6×5}{8×7×6×5×4×3×2×1-9×8×7×6×5}$
=$\frac{2×4-7}{4×3×2×1-9}$
=$\frac{1}{15}$;
(2)證明:∵A${\;}_{n+1}^{m}$=$\frac{(n+1)!}{(n-m+1)!}$,
mA${\;}_{n}^{m-1}$+A${\;}_{n}^{m}$=$\frac{m•n!}{(n-m+1)!}$+$\frac{n!}{(n-m)!}$
=$\frac{m•n!+(n-m+1)•n!}{(n-m+1)!}$
=$\frac{(n+1)!}{(n-m+1)!}$,
∴${A}_{n+1}^{m}$=m${A}_{n}^{m-1}$+${A}_{n}^{m}$.

點(diǎn)評 本題考查了排列數(shù)公式的應(yīng)用問題,也考查了計(jì)算能力與邏輯推論能力的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}的各項(xiàng)均不為零,其前n項(xiàng)和為Sn,Sn=2an-2(n∈N*),設(shè)${b_n}=\frac{3^n}{{{2^n}{S_n}}}$,數(shù)列{bn}的前n項(xiàng)和為Tn
(Ⅰ)比較bn+1與$\frac{3}{4}{b_n}$的大。╪∈N*);
(Ⅱ)證明:(2n-1)bn≤T2n-1<3,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求(x2+3x-4)4的展開式中x的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=$\sqrt{x}$+log2(x+1),則f(-1)=( 。
A.1B.-1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,一艘船現(xiàn)在燈塔C北偏東75°的點(diǎn)A且AC=3海里,當(dāng)船航行了$\sqrt{21}$海里后到達(dá)點(diǎn)B,若點(diǎn)B在燈塔C西偏北15°方向上,則B,C兩點(diǎn)的距離為$\sqrt{3}$海里.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.為了測量學(xué)校操場四邊形ABCD的周長和面積,在操場中間取一點(diǎn)O.測得OA=40m,OB=37m,OC=42m,OD=44m,且∠DOA=120°,∠AOB=60°,∠BOC=45°,∠COD=135°.
(1)試求四邊形的周長;
(2)試求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知sin2α=-$\frac{12}{25}$,且α為第二象限角,則sinα-cosα=$\frac{\sqrt{37}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.利用函數(shù)周期性的定義求證函數(shù)f(x)=$\sqrt{1-cos2x}$+$\sqrt{1+cos2x}$的周期為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知$\frac{π}{6}$<α<$\frac{π}{2}$.且cos(α-$\frac{π}{6}$)=$\frac{15}{17}$,求cosα,sinα.

查看答案和解析>>

同步練習(xí)冊答案