18.已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=$\sqrt{x}$+log2(x+1),則f(-1)=(  )
A.1B.-1C.-2D.2

分析 由條件利用函數(shù)的奇偶性可得f(-1)=-f(1),計(jì)算求得結(jié)果.

解答 解:由題意可得f(-1)=-f(1)=-[$\sqrt{1}$+log2(1+1)]=-(1+1)=-2,
故選:C.

點(diǎn)評(píng) 本題主要考查利用函數(shù)的奇偶性求函數(shù)的值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=|x-3|-|x+a|,其中a∈R.
(Ⅰ)當(dāng)a=2時(shí),解不等式f(x)<1;
(Ⅱ)若對(duì)于任意實(shí)數(shù)x,恒有f(x)≤2a成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)計(jì)一個(gè)算法,求1×3+3×5+5×7+…+(2n-1)×(2n+1)>2016成立的最小正整數(shù)n,試畫出算法的程序框圖并寫出對(duì)應(yīng)的程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=2sin2($\frac{π}{4}$+x)-$\sqrt{3}$cos2x.
(1)求f(x)的對(duì)稱中心;
(2)若關(guān)于x的方程f(x)-m=2在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上有二解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知直線l1:2x-(a-1)y+1=0,l2:2ax+(a+1)y+a=0(a∈R).
(1)若直線l1的傾斜角是直線l2的傾斜角的一半,求a值;
(2)若直線l1,l2與y軸圍成的三角形面積為$\frac{1}{2}$.求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.直線3x+my-1=0與4x+3y-n=0的交點(diǎn)為(2,-1),則坐標(biāo)原點(diǎn)到直線mx+ny=5的距離為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(1)計(jì)算$\frac{2{A}_{8}^{5}+7{A}_{8}^{4}}{{A}_{8}^{8}-{A}_{9}^{5}}$
(2)求證:A${\;}_{n+1}^{m}$=mA${\;}_{n}^{m-1}$+A${\;}_{n}^{m}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.給出下列幾種說法:
①若非零向量$\overrightarrow{a}$與$\overrightarrow$共線,則$\overrightarrow{a}$=$\overrightarrow$;
②若向量$\overrightarrow{a}$與$\overrightarrow$同向,且|$\overrightarrow{a}$|>|$\overrightarrow$|,則$\overrightarrow{a}$>$\overrightarrow$;
③若兩向量有相同的基線,則兩向量相等;
④若$\overrightarrow{a}$$∥\overrightarrow$,$\overrightarrow∥\overrightarrow{c}$,則$\overrightarrow{a}∥\overrightarrow{c}$
其中錯(cuò)誤說法的序號(hào)是①②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.當(dāng)實(shí)數(shù)m為何值時(shí),sinx=$\frac{1+m}{2+m}$有意義?

查看答案和解析>>

同步練習(xí)冊答案