10.在復(fù)平面內(nèi),若z=m-3+mi 所對(duì)應(yīng)的點(diǎn)在第二象限,則實(shí)數(shù)m的取值范圍是( 。
A.(0,3)B.(-∞,-2)C.(-2,0)D.(3,4)

分析 由z=m-3+mi 所對(duì)應(yīng)的點(diǎn)(m-3,m)在第二象限,則$\left\{\begin{array}{l}{m-3<0}\\{m>0}\end{array}\right.$,解出即可得出.

解答 解:若z=m-3+mi 所對(duì)應(yīng)的點(diǎn)(m-3,m)在第二象限,則$\left\{\begin{array}{l}{m-3<0}\\{m>0}\end{array}\right.$,解得0<m<3.
實(shí)數(shù)m的取值范圍是(0,3),
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的幾何意義、坐標(biāo)性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.求(1+x2)(x-$\frac{1}{x}$)9的展開式中x5的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.10名同學(xué)參加投籃比賽,每人投20球,投中的次數(shù)用莖葉圖表示(如圖),設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有( 。
A.a>b>cB.b>c>aC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)$f(x)=2sin(2x-\frac{π}{3})+1$
(Ⅰ)求f(x)的最小正周期、最值.
(Ⅱ)若對(duì)任意的x1,x2∈[0,$\frac{π}{2}$],都有|f(x1)-f(x2)|<m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.某組合體的三視圖如圖所示,則該幾何體的體積為32+8π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知一非零向量列{$\overrightarrow{{a}_{n}}$}滿足:$\overrightarrow{{a}_{1}}$=(1,$\sqrt{3}$),且$\overrightarrow{{a}_{n}}$=(xn,yn)=$\frac{1}{2}$(xn-1-yn-1,xn-1+yn-1)(n≥2).
(1)求證:{|$\overrightarrow{{a}_{n}}$|}是等比數(shù)列;
(2)求證:$\overrightarrow{{a}_{n-1}}$,$\overrightarrow{{a}_{n}}$(n≥2)的夾角θn為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知扇形的圓心角為60°,其弧長(zhǎng)為2π,則此扇形的面積為6π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若曲線y=$\sqrt{|{x}^{2}-4|}$與直線y=x+m恰好有兩個(gè)交點(diǎn),則實(shí)數(shù)m的取值范圍是(-2,0)∪{2}∪{$2\sqrt{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知MOD函數(shù)是一個(gè)求余函數(shù),其格式為MOD(n,m),其結(jié)果為n除以m的余數(shù),例如MOD(7,3)=1,如圖是一個(gè)算法的程序框圖,當(dāng)輸入的n值為15時(shí),輸出的結(jié)果為( 。
A.4B.5C.6D.7

查看答案和解析>>

同步練習(xí)冊(cè)答案