14.若復(fù)數(shù)z滿足z(i-1)=(i+1)2(i為虛數(shù)單位),則z為( 。
A.1+iB.1-iC.-1+iD.-1-i

分析 把已知的等式變形,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)求值.

解答 解:∵z(i-1)=(i+1)2
∴$z=\frac{(i+1)^{2}}{-1+i}=\frac{2i}{-1+i}=\frac{2i(-1-i)}{(-1+i)(-1-i)}$=$\frac{2-2i}{2}=1-i$,
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)$[{\begin{array}{l}2\\ 3\end{array}}]$是矩陣$M=[{\begin{array}{l}a&2\\ 3&2\end{array}}]$的一個(gè)特征向量,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.將函數(shù)f(x)=cosx-$\sqrt{3}sinx$(x∈R)的圖象向左平移a(a>0)個(gè)單位長(zhǎng)度后,所得的圖象關(guān)于原點(diǎn)對(duì)稱,則a的最小值是( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,下列說法正確的是(  )
A.f(x)的圖象關(guān)于直線$x=-\frac{2π}{3}$對(duì)稱
B.f(x)的圖象關(guān)于點(diǎn)$(-\frac{5π}{12},0)$對(duì)稱
C.將函數(shù)$y=\sqrt{3}sin2x-cos2x$的圖象向左平移$\frac{π}{2}$個(gè)單位得到函數(shù)f(x)的圖象
D.若方程f(x)=m在$[-\frac{π}{2},0]$上有兩個(gè)不相等的實(shí)數(shù)根,則m的取值范圍是$(-2,-\sqrt{3}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),x∈R.
(1)求函數(shù)的最小正周期;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)求函數(shù)在[0,$\frac{π}{2}$]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)△ABC的三個(gè)內(nèi)角為A、B、C,且tanA,tanB,tanC,2tanB成等差數(shù)列,則cos(B-A)=( 。
A.-$\frac{3\sqrt{10}}{10}$B.-$\frac{\sqrt{10}}{10}$C.$\frac{\sqrt{10}}{10}$D.$\frac{3\sqrt{10}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.對(duì)于函數(shù)f(x)=$\frac{sinx}{2+cosx}$,給出下列結(jié)論:
①f(x)為奇函數(shù);
②x=$\frac{π}{2}$是f(x)的一條對(duì)稱軸;
③2π是f(x)的一個(gè)周期;
④f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上為增函數(shù);
⑤f(x)的值域?yàn)閇-$\frac{1}{2}$,$\frac{1}{2}$];
其中正確的結(jié)論是①③④(寫出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.一個(gè)頻率分布表(樣本容量為30)不小心倍損壞了一部分,只記得樣本中數(shù)據(jù)在[20,60)上的頻率為0.8,則估計(jì)樣本在[40,50),[50,60)內(nèi)的數(shù)據(jù)個(gè)數(shù)共為( 。
A.15B.16C.17D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.“a>b”是“3a>3b”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案