集合M由正整數(shù)的平方組成,即M={1,4,9,16,25,…},若對(duì)某集合中的任意兩個(gè)元素進(jìn)行某種運(yùn)算,運(yùn)算結(jié)果仍在此集合中,則稱此集合對(duì)該運(yùn)算是封閉的.M對(duì)下列運(yùn)算封閉的是
 

①加法②減法、鄢朔ā、艹ǎ
考點(diǎn):進(jìn)行簡(jiǎn)單的合情推理
專題:常規(guī)題型,推理和證明
分析:由題意依次對(duì)四個(gè)運(yùn)算驗(yàn)證,注意舉反例.
解答: 解:∵1+4=5∉M,∴M對(duì)加法不封閉;
∵1-4=-3∉M,∴M對(duì)減法不封閉;
∵若a2,b2∈M,則a2×b2=(ab)2∈M,則對(duì)乘法封閉;
∵1÷4=
1
4
∉M,∴M對(duì)除法不封閉;
故答案為:③.
點(diǎn)評(píng):本題考查了集合與元素的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于n∈N*,求證:1+
1
2
+…+
1
n
≥eln(n+1)-n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1=8,a4=2,且對(duì)任意的n∈N*滿足an+2-2an+1+an=0.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=a2n-1+a2n(n=1,2,3,…),問(wèn)數(shù)列{bn}是否是等差數(shù)列?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b為實(shí)數(shù),證明:(a4+b4)(a2+b2)≥(a3+b32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)ha,hb,hc分別是△ABC的三邊BC,CA,AB上的高,且滿足3hc2=hahb,則角C的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=2-2n,則其前n項(xiàng)和最大時(shí)n的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={-2,3x2+3x-4,x2+x-4},若2∈M,則滿足條件的實(shí)數(shù)x組成的集合為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)、g(x)為實(shí)數(shù)函數(shù),且M={x|f(x)=0},N={x|g(x)=0},則方程[f(x)]2+[g(x)]2=0的解集是
 
.(用M、N表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等比數(shù)列{an}中,a1=64,a2=8,則公比q=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案