17.在△ABC中,角A,B,C所對的邊分別是a,b,c,已知sin(B+A)+sin(B-A)=3sin2A,且c=$\sqrt{7}$,C=$\frac{π}{3}$,則△ABC的面積是$\frac{3\sqrt{3}}{4}$或$\frac{7\sqrt{3}}{6}$.

分析 由題意化簡三角函數(shù)式可得cosA(sinB-3sinA)=0,分別就cosA=0或sinB-3sinA=0結(jié)合三角形的面積公式可得.

解答 解:∵在△ABC中sin(B+A)+sin(B-A)=3sin2A,
∴sinBcosA+cosBsinA+sinBcosA-cosBsinA=6sinAcosA,
∴2sinBcosA=6sinAcosA,故cosA(sinB-3sinA)=0,
當cosA=0時,A=$\frac{π}{2}$,由c=$\sqrt{7}$,C=$\frac{π}{3}$可得b=$\frac{\sqrt{21}}{3}$,故面積S=$\frac{1}{2}$bc=$\frac{7\sqrt{3}}{6}$;
當sinB-3sinA=0時,由正弦定理可得b=3a,再由c=$\sqrt{7}$,C=$\frac{π}{3}$,
由余弦定理可得7=a2+9a2-2•a•3a•$\frac{1}{2}$,解得a=1,故b=3,面積S=$\frac{1}{2}$absinC=$\frac{3\sqrt{3}}{4}$
故答案為:$\frac{3\sqrt{3}}{4}$或$\frac{7\sqrt{3}}{6}$

點評 本題考查正余弦定理解三角形,涉及分類討論的思想和三角函數(shù)公式,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.數(shù)列{an}為等差數(shù)列,a1=19,a26=-1,Sn為數(shù)列{an}的前n項和,設(shè)Tn=|Sn+6-Sn-1|,n∈N*,則Tn的最小值為( 。
A.$\frac{7}{5}$B.$\frac{12}{5}$C.$\frac{16}{5}$D.$\frac{21}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知四邊形ABCD是矩形,設(shè)點集M={A,B,C,D},集合T={$\overrightarrow{PQ}$|P,Q∈M,且P,Q不重合},用列舉法表示集合T={$\overrightarrow{AB}$,$\overrightarrow{AC}$,$\overrightarrow{AD}$,$\overrightarrow{BD}$,$\overrightarrow{BA}$,$\overrightarrow{CA}$,$\overrightarrow{DA}$,$\overrightarrow{DB}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{2x+y-2≥0}\\{x-2y+4≥0}\\{3x-y-3≤0}\end{array}\right.$.
(1)試求z=$\frac{y+1}{x+1}$的最大值和最小值;
(2)試求z=x2+y2的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.正項數(shù)列{an}的前n項和為Sn,且4Sn=${a}_{n}^{2}$+2an,若數(shù)列{bn}滿足bn=an•sin$\frac{2nπ}{3}$,{bn}的前n項和為Tn,則T6=$-2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.點M的球坐標為(8,$\frac{π}{3}$,$\frac{5}{6}$π),則它的直角坐標為(  )
A.(-6,2$\sqrt{3}$,4)B.(6,2$\sqrt{3}$,4)C.(-6,-2$\sqrt{3}$,4)D.(-6,2$\sqrt{3}$,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知a,b,c,d∈R,給出下列四個命題,其中正確的是(  )
A.若a>b,c>d,則a-d<b-cB.若ac2>bc2,則a>b
C.若c<b<a,且ac<0,則cb2<ab2D.若a>b,則lg(a-b)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線與拋物線D:y2=2px(p>0)的準線分別交于A,B兩點,O為坐標原點.若雙曲線的離心率為2,△AOB的面積為$\sqrt{3}$
(Ⅰ)求雙曲線C的漸近線方程;
(Ⅱ)求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.“x≠y”是“|x|≠|(zhì)y|”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案