14.某幾何體三視圖如圖,根據(jù)圖中標(biāo)出的尺寸(單位:cm)可得該幾何體的體積是6cm3(V柱體=Sh)

分析 由已知中的三視圖,可知該幾何體是一個(gè)以俯視圖為底面的大長方體挖去一個(gè)小長方體所得組合體,分別計(jì)算底面面積和高,代入柱體體積公式,可得答案.

解答 解:由已知中的三視圖,可知該幾何體是一個(gè)以俯視圖為底面的大長方體挖去一個(gè)小長方體所得組合體,
其底面面積S=2×2-1×1=3cm2,
高h(yuǎn)=2cm,
故柱體的體積V柱體=Sh=6cm3
故答案為:6cm3

點(diǎn)評 本題考查的知識點(diǎn)是由三視圖求體積和表面積,解決本題的關(guān)鍵是得到該幾何體的形狀.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若sinα=-$\frac{3}{5}$,α∈(-$\frac{π}{2}$,0),則 cos(α+$\frac{5π}{4}$)=$-\frac{7\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓$\frac{x^2}{4}+\frac{y^2}{b^2}$=1(b>0),雙曲線$\frac{x^2}{m^2}-\frac{y^2}{n^2}$=1(m>0,n>0)的右焦點(diǎn)都與拋物線y2=4x的焦點(diǎn)F重合.
(1)若橢圓、雙曲線、拋物線在第一象限交于同一點(diǎn)P,求橢圓與雙曲線的標(biāo)準(zhǔn)方程.
(2)若雙曲線與拋物線在第一象限交于Q點(diǎn),以Q為圓心且過拋物線的焦點(diǎn)F的圓被y軸截得的弦長為2$\sqrt{3}$,求雙曲線的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AC⊥AB,AD⊥DC,∠DAC=60°,PA=AC=2,AB=1,點(diǎn)E在棱PC上,且DE⊥PB.
(Ⅰ) 求CE的長;
(Ⅱ) 求二面角A-PB-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=-2x3+3x2+12x-11,g(x)=kx+9,如果f(x)≤g(x)在[-2,+∞)上恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.函數(shù)$f(x)=\sqrt{|x+1|+|x+2|-a}$.
(1)a=5,函數(shù)f(x)的定義域A;
(2)設(shè)B={x|-1<x<2},當(dāng)實(shí)數(shù)a,b∈(B∩CRA)時(shí),證明:$\frac{|a+b|}{2}<|1+\frac{ab}{4}|$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知tan(π-α)=-2,則$\frac{1}{{cos2α+{{cos}^2}α}}$=( 。
A.-3B.$\frac{2}{5}$C.3D.$-\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}和{bn}對任意的n∈N*滿足${a_1}{a_2}…{a_n}={3^{{b_n}-n}}$,若數(shù)列{an}是等比數(shù)列,且a1=1,b2=b1+2.
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=$\frac{1}{a_n}-\frac{1}{b_n}(n∈{N^*})$,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知兩個(gè)集合A={x|y=ln(-x2+x+2)},$B=\left\{{x\left|{\frac{2e+1}{e-x}≤2}\right.}\right\}$則A∩B=( 。
A.$[{-\frac{1}{2},2})$B.$({-1,-\frac{1}{2}}]$C.(-1,e)D.(2,e)

查看答案和解析>>

同步練習(xí)冊答案