【題目】隨著經(jīng)濟(jì)模式的改變,微商和電商已成為當(dāng)今城鄉(xiāng)一種新型的購(gòu)銷(xiāo)平臺(tái).已知經(jīng)銷(xiāo)某種商品的電商在任何一個(gè)銷(xiāo)售季度內(nèi),沒(méi)售出1噸該商品可獲利潤(rùn)0.5萬(wàn)元,未售出的商品,每1噸虧損0.3萬(wàn)元.根據(jù)往年的銷(xiāo)售經(jīng)驗(yàn),得到一個(gè)銷(xiāo)售季度內(nèi)市場(chǎng)需求量的頻率分布直方圖如圖所示.已知電商為下一個(gè)銷(xiāo)售季度籌備了130噸該商品,現(xiàn)以(單位:噸,)表示下一個(gè)銷(xiāo)售季度的市場(chǎng)需求量,(單位:萬(wàn)元)表示該電商下一個(gè)銷(xiāo)售季度內(nèi)經(jīng)銷(xiāo)該商品獲得的利潤(rùn).

(Ⅰ)視分布在各區(qū)間內(nèi)的頻率為相應(yīng)的概率,求;

Ⅱ)將表示為的函數(shù),求出該函數(shù)表達(dá)式;

Ⅲ)在頻率分布直方圖的市場(chǎng)需求量分組中,以各組的區(qū)間中點(diǎn)值(組中值代表該組的各個(gè)值,并以市場(chǎng)需求量落入該區(qū)間的頻率作為市場(chǎng)需求量取該組中值的概率(例如,則取的概率等于市場(chǎng)需求量落入的頻率),的分布列及數(shù)學(xué)期望

【答案】(Ⅰ);;(Ⅲ).

【解析】分析:(Ⅰ)根據(jù)頻率分布直方圖和互斥事件的概率公式求解.結(jié)合題意用分段函數(shù)的形式表示的關(guān)系.(Ⅲ)先確定的所有可能取值為45,53,61,65,然后分別求出相應(yīng)的概率,進(jìn)而可得分布列,最后求出期望

詳解(Ⅰ)根據(jù)頻率分布直方圖及互斥事件的概率公式可得:

(Ⅱ)當(dāng)時(shí),,

當(dāng)時(shí),

所以

(Ⅲ)由題意及(Ⅱ)可得:

當(dāng)時(shí),,;

當(dāng)時(shí),,;

當(dāng)時(shí),,;

當(dāng)時(shí),,

所以的分布列為:

45

53

61

65

0.1

0.2

0.3

0.4

萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“珠算之父”程大為是我國(guó)明代偉大數(shù)學(xué)家,他的應(yīng)用數(shù)學(xué)巨著《算法統(tǒng)綜》的問(wèn)世,標(biāo)志著我國(guó)的算法由籌算到珠算轉(zhuǎn)變的完成,程大位在《算法統(tǒng)綜》中常以詩(shī)歌的形式呈現(xiàn)數(shù)學(xué)問(wèn)題,其中有一首“竹筒容米”問(wèn)題:“家有九節(jié)竹一莖,為因盛米不均平,下頭三節(jié)三升九,上稍四節(jié)儲(chǔ)三升,唯有中間兩節(jié)竹,要將米數(shù)次第盛,若有先生能算法,也教算得到天明”((注)三升九:升,次第盛;盛米容積依次相差同一數(shù)量.)用你所學(xué)的數(shù)學(xué)知識(shí)求得中間兩節(jié)的容積為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從參加某次知識(shí)競(jìng)賽的同學(xué)中,選取60名同學(xué)將其成績(jī)(百分制,均為整數(shù))分成, , , , 六組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問(wèn)題:

(1)求分?jǐn)?shù)內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;

(2)從頻率分布直方圖中,估計(jì)本次考試成績(jī)的中位數(shù);

(3)若從第1組和第6組兩組學(xué)生中,隨機(jī)抽取2人,求所抽取2人成績(jī)之差的絕對(duì)值大于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)R上的奇函數(shù),當(dāng)x0時(shí),解析式為f(x).

(1)f(x)R上的解析式;

(2)用定義證明f(x)(0,+∞)上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在正方體ABCDA1B1C1D1中,設(shè)線段A1C與平面ABC1D1交于點(diǎn)Q,求證:B,Q,D1三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知非零數(shù)列滿足,.

1)求證:數(shù)列是等比數(shù)列;

2)若關(guān)于的不等式有解,求整數(shù)的最小值;

3)在數(shù)列中,是否存在首項(xiàng)、第項(xiàng)、第項(xiàng)(),使得這三項(xiàng)依次構(gòu)成等差數(shù)列?若存在,求出所有的;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+(x2-3x)lnx

(1)求函數(shù)f(x)x=e處的切線方程

(2)對(duì)任意的x)都存在正實(shí)數(shù)a,使得方程f(x)=a至少有2個(gè)實(shí)根, a的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A(-2,0),B(2,0)為橢圓C的左、右頂點(diǎn),F(xiàn)為其右焦點(diǎn),P是橢圓C上異于A,B的動(dòng)點(diǎn),且△APB面積的最大值為

(Ⅰ)求橢圓C的方程;

(Ⅱ)直線AP與橢圓在點(diǎn)B處的切線交于點(diǎn)D,當(dāng)點(diǎn)P在橢圓上運(yùn)動(dòng)時(shí),求證:以BD為直徑的圓與直線PF恒相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為是橢圓的兩個(gè)焦點(diǎn),是橢圓上任意一點(diǎn),且的周長(zhǎng)是6.

(1)求橢圓的方程;

(2)設(shè)圓:,過(guò)橢圓的上頂點(diǎn)作圓的兩條切線交橢圓于兩點(diǎn),當(dāng)圓心在軸上移動(dòng)且時(shí),求的斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案