分析 由已知結合正弦定理可求sinB,B為三角形內角,由三角形內角和定理從而可求B,C,利用正弦定理即可求c的值.
解答 解:由正弦定理可得:sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{3}×\frac{1}{2}}{1}$=$\frac{\sqrt{3}}{2}$,
所以B=$\frac{π}{3}$或$\frac{2π}{3}$,
故C=π-A-B=$\frac{π}{2}$或$\frac{π}{6}$,
由正弦定理可得:c=$\frac{asinC}{sinA}$=$\frac{1}{\frac{1}{2}}$=2,或c=$\frac{asinC}{sinA}$=$\frac{1×\frac{1}{2}}{\frac{1}{2}}$=1.
故答案為:1或2.
點評 本題主要考查了三角形內角和定理,正弦定理的應用,屬于基本知識的考查.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 70 | B. | 64 | C. | 48 | D. | 30 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{9+2\sqrt{3}+\sqrt{5}}}{2}$ | B. | $\frac{{9+2\sqrt{3}}}{2}$ | C. | $\frac{{9+2\sqrt{5}}}{2}$ | D. | $\frac{{11+\sqrt{5}}}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com