6.已知向量$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為60°,且|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|=2,若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+$\overrightarrow{AC}$,且$\overrightarrow{AP}$⊥$\overrightarrow{BC}$,則實數(shù)λ的值為( 。
A.$\frac{1}{2}$B.1C.2D.-$\frac{1}{2}$

分析 根據(jù)向量的數(shù)量積以及向量垂直的定義和關系建立方程關系即可得到結論.

解答 解:∵向量$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為60°,且|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|=2,
∴向量$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$||$\overrightarrow{AC}$|cos60°=2×2×$\frac{1}{2}$=2,
∵$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+$\overrightarrow{AC}$,且$\overrightarrow{AP}$⊥$\overrightarrow{BC}$,
∴$\overrightarrow{AP}$•$\overrightarrow{BC}$=(λ$\overrightarrow{AB}$+$\overrightarrow{AC}$)•$\overrightarrow{BC}$=0,
即λ$\overrightarrow{AB}$•$\overrightarrow{BC}$+$\overrightarrow{AC}$•$\overrightarrow{BC}$=0,
則λ$\overrightarrow{AB}$•($\overrightarrow{AC}$-$\overrightarrow{AB}$)+$\overrightarrow{AC}$•($\overrightarrow{AC}$-$\overrightarrow{AB}$)=0,
即λ$\overrightarrow{AB}$•$\overrightarrow{AC}$-λ$\overrightarrow{AB}$2+$\overrightarrow{AC}$2-$\overrightarrow{AB}$•$\overrightarrow{AC}$=0,
則2λ-4λ+4-2=0,
2λ=2,解得λ=1,
故選:B.

點評 本題主要考查平面向量的數(shù)量積的應用以后平面向量的基本定理的應用,根據(jù)向量垂直的等價關系建立方程是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)和圓x2+y2=b2,設橢圓的左、右焦點分別為F1,F(xiàn)2,上頂點為Q,過橢圓上一點P引圓O的兩條切線,切點分別為A、B.
(1)①若$\overrightarrow{Q{F}_{1}}$⊥$\overrightarrow{Q{F}_{2}}$,求橢圓的離心率e;
②若橢圓上存在點P,使得∠APB=60°,求橢圓離心率e的取值范圍;
(2)設直線AB與x軸、y軸分別交于M,N,求△MON面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-1,k),$\overrightarrow{a}$•$\overrightarrow$=0,則實數(shù)k的值為( 。
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,已知點C在圓O直徑BE的延長線上,CA切圓O于點A,CD是∠ACB的平分線,交AE于點F,交AB于點D.
(Ⅰ)求證:CE•AB=AE•AC
(Ⅱ)若AD:DB=1:2,求證:CF=DF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函f(x)=$\frac{1}{2}$ax2+(a-1)x,g(x)=tlnx,數(shù)若直線y=e-2x+1是g(x)在x=e2處的切線方程.
(Ⅰ)函數(shù)f(x)+g(x)在區(qū)間(1,+∞)上單調遞增,求實數(shù)a的取值范圍;
(Ⅱ)當a>0時,對任意正實數(shù)x,不等式f(x)≥g(x)+2k-$\frac{3}{2a}$恒成立,求實數(shù)k的取值范圍;
(Ⅲ)證明:$\frac{{n}^{n}}{(n+1)^{n+1}}$<$\frac{1}{ne}$(n∈N+).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.一款擊鼓小游戲的規(guī)則如下:每盤游戲都需擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得-200分).設每次擊鼓出現(xiàn)音樂的概率為$\frac{1}{2}$,且各次擊鼓出現(xiàn)音樂相互獨立.
(Ⅰ)設每盤游戲獲得的分數(shù)為X,求X的分布列;
(Ⅱ)玩三盤游戲,至少有一盤出現(xiàn)音樂的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在△ABC中,角A,B,C的對邊分別為a,b,c,且b2+c2=a2+$\sqrt{3}$bc.sinAsinB=cos2$\frac{C}{2}$.
(1)求角A,B,C的大;
(2)若BC邊上的中線AM的長為$\sqrt{7}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.一個小商店從某食品有限公司購進10袋白糖,稱池內各袋白糖的重量(單位:g),如莖葉圖所示,其中有一個數(shù)據(jù)被污損.
(Ⅰ)若已知這些白糖重量的平均數(shù)為497g,求污損處的數(shù)據(jù)a;
(Ⅱ)現(xiàn)從重量不低于498g的所購各袋白糖中隨機抽取2袋,求重量是508g的那袋被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.過圓x2+y2=2與外一點P(6,-8),作圓的一條切線PA,A為切點,求線段PA的長.

查看答案和解析>>

同步練習冊答案