10.已知f(x)=|ax+2|,g(x)=|2x+b|.
(1)若a=1,b=-2,求不等式f(x)-g(x)≥-2的解集;
(2)求證:f(x)≥g(x)恒成立,的條件為ab=4且|a|≥2.

分析 (1)若a=1,b=-2,分類討論求不等式f(x)-g(x)≥-2的解集;
(2)f(x)≥g(x),即|ax+2|≥|2x+b|,即(a2-4)x2+(4a-4b)x+4-b2≥0,利用二次函數(shù)的性質(zhì),即可證明結(jié)論.

解答 (1)解:a=1,b=-2,不等式f(x)-g(x)≥-2,即|x+2|-|2x-2|≥-2.
x≤-2時(shí),-x-2+2x-2≥-2,解得x≥2,無解;
-2<x<1時(shí),x+2+2x-2≥-2,解得x≥-$\frac{2}{3}$,∴-$\frac{2}{3}$≤x<1;
x≥1時(shí),x+2-2x+2≥-2,解得x≤6,∴1≤x≤6;
綜上所述,不等式的解集為{x|-$\frac{2}{3}$≤x≤6};
(2)證明:f(x)≥g(x),即|ax+2|≥|2x+b|.
∴(a2-4)x2+(4a-4b)x+4-b2≥0,
∵f(x)≥g(x)恒成立,
∴$\left\{\begin{array}{l}{{a}^{2}-4≥0}\\{(4a-4b)^{2}-4({a}^{2}-4)(4-^{2})≤0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{|a|≥2}\\{(ab-4)^{2}≤0}\end{array}\right.$,
∴ab=4且|a|≥2.

點(diǎn)評(píng) 本題考查絕對(duì)值不等式的解法,考查恒成立問題,考查分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.多面體ABCDFE中,底面四邊形ABCD為矩形,EF∥AD,AE=FD,F(xiàn)G=GD,AD=2AB=2EF=2,且四邊形EADF的面積為$\frac{3\sqrt{3}}{4}$.
(1)判斷直線BF與平面ACG的關(guān)系,并說明理由;
(2)若平面EADF⊥平面ABCD,求平面FBC與平面ACG形成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.將方程組寫成矩陣形式:
$\left\{\begin{array}{l}{2x+y-z=0}\\{7x+10y=330}\\{5y+8z=220}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某統(tǒng)計(jì)部門隨機(jī)抽查了3月1日這一天新世紀(jì)百貨童裝部100名顧客的購買情況,得到如圖數(shù)據(jù)統(tǒng)計(jì)表,已知購買金額在2000元以上(不含2000元)的頻率為0.4.
購買金額頻數(shù)頻率
(0,500]50.05
(500,1000]xp
(1000,1500]150.15
(1500,2000]250.25
(2000,2500]300.3
(2500,3000]yq
合計(jì)1001.00
(1)確定x,y,p,q的值;
(2)為進(jìn)一步了解童裝部的購買情況是否與顧客性別有關(guān),對(duì)這100名顧客調(diào)查顯示:購物金額在2000元以上的顧客中女顧客有35人,購物金額在2000元以下(含2000元)的顧客中男顧客有20人;
①請(qǐng)將列聯(lián)表補(bǔ)充完整:
女顧客男顧客合計(jì)
購物金額在2000元以上35
購物金額在2000元以下20
合計(jì)100
②并據(jù)此列聯(lián)表,判斷是否有97.5%的把握認(rèn)為童裝部的購買情況與顧客性別有關(guān)?
參考數(shù)據(jù):
P(K2≥k)0.010.050.0250.01
k2.7063.8415.0246.635
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x)=x3-6x2+9x+a有三個(gè)不同的零點(diǎn),則下述判斷中一定正確的是( 。
A.a為任意實(shí)數(shù)B.a=f′(3)C.a>f′(3)D.a<f′(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某班有25名男生、15名女生共40人,現(xiàn)對(duì)他們更愛好文娛還是更愛好體育進(jìn)行調(diào)查,根據(jù)調(diào)查得到的數(shù)據(jù),所繪制的二維條形圖如圖.
(1)根據(jù)圖中數(shù)據(jù),制作2×2列聯(lián)表,并判斷能否在犯錯(cuò)概率不超過0.10的前提下認(rèn)為性別與是否更愛好體育有關(guān)系?
(2)若要從更愛好體育的學(xué)生中各隨機(jī)選2人,求所選2人中女生人數(shù)X的期望;
(3)若要從更愛好文娛和更愛好體育的學(xué)生中各選一人分別做文體活動(dòng)協(xié)調(diào)人,求選出的兩人恰好是一男一女的概率;
參考數(shù)據(jù):
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
 更愛好體育更愛好文娛 合計(jì)
 男生   
 女生   
 合計(jì)  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,△ABC為⊙O的內(nèi)接三角形,D,E分別為BC,AB的中點(diǎn),直線DE交圓O于F,G,且直線DE與過A點(diǎn)的切線交于點(diǎn)P,DF=1,DE=2,PE=3.
(1)求證:△PEA~△BDE;
(2)求線段PA的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.有甲乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績后,得到如表的列聯(lián)表.
 優(yōu)秀非優(yōu)秀總計(jì)
甲班10  
乙班 30 
合計(jì)  100
已知在全部100人中抽到隨機(jī)抽取1人為優(yōu)秀的概率為$\frac{3}{10}$
(1)請(qǐng)完成如表的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),有多大的把握認(rèn)為“成績與班級(jí)有關(guān)系“?
(3)按分層抽樣的方法,從優(yōu)秀學(xué)生中抽出6名學(xué)生組成一個(gè)樣本,再從樣本中抽出2名學(xué)生,記甲班被抽到的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.
參考公式和數(shù)據(jù):K2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$,其中n=a+b+c+d
下面的臨界值表供參考:
p(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖(1)是正方體木塊截去一個(gè)三棱柱后得到的幾何體,圖(2)是該幾何體的側(cè)視圖.點(diǎn)P是A′F和D′E的交點(diǎn)

(1)求直線AP與平面A′D′FE所成角的正弦值.
(2)經(jīng)過BC及點(diǎn)P鋸開該幾何體,該怎樣畫線?并求出鋸截面的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案