19.已知函數(shù)f(x)=ex-ax-1(a>0,e為自然數(shù)的底數(shù)).
(1)求函數(shù)f(x)的最小值;
(2)若f(x)≥0對任意的x∈R恒成立,求實數(shù)a的值;
(3)在(2)的條件下,證明:1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$>ln(n+1)(n∈N*).

分析 (1)通過對函數(shù)f(x)求導(dǎo),討論f(x)的單調(diào)性可得函數(shù)f(x)的最小值;
(2)根據(jù)條件可得g(a)=a-alna-1≥0,討論g(a)的單調(diào)性即得結(jié)論;
(3)由(2)得ex≥x+1,即ln(x+1)≤x,通過令x=$\frac{1}{k}$ (k∈N*),即$\frac{1}{k}$>ln$\frac{1+k}{k}$=ln(1+k)-lnk,(k=1,2,…,n),然后累加即可得證.

解答 解:(1)函數(shù)f(x)的導(dǎo)數(shù)為f′(x)=ex-a,
令f′(x)=0,解得x=lna,
當(dāng)x>lna時,f′(x)>0;當(dāng)x<lna時,f′(x)<0,
因此當(dāng)x=lna時,f(x)min=f(lna)=elna-alna-1=a-alna-1.
(2)因為f(x)≥0對任意的x∈R恒成立,所以f(x)min≥0,
由(1)得f(x)min=a-alna-1,
所以a-alna-1≥0,
令g(a)=a-alna-1,
函數(shù)g(a)的導(dǎo)數(shù)為g′(a)=-lna,
令g′(a)=0,解得a=1.
當(dāng)a>1時,g′(a)<0;當(dāng)0<a<1時,g′(a)>0,
所以當(dāng)a=1時,g(a)取得最大值,為0.
所以g(a)=a-alna-1≤0.
又a-alna-1≥0,因此a-alna-1=0,
解得a=1;
(3)由(2)得ex≥x+1,即ln(x+1)≤x,
當(dāng)且僅當(dāng)x=0時,等號成立,
令x=$\frac{1}{k}$ (k∈N*),則$\frac{1}{k}$>ln(1+$\frac{1}{k}$),
即$\frac{1}{k}$>ln$\frac{1+k}{k}$=ln(1+k)-lnk,(k=1,2,…,n),
累加,得1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$>ln(n+1)-lnn+lnn-ln(n-1)+…+ln2-ln1,
則有1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$>ln(n+1)(n∈N*).

點評 本題考查函數(shù)的最值,單調(diào)性,通過對表達式的靈活變形是解決本題的關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知△ABC的三個內(nèi)角A、B、C所對的邊分別為a,b,c,若2cosBsinAsinC=sin2B,求證:a2,b2,c2成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,已知圓柱的高為4,AA1,BB1,CC1是圓柱的三條母線,AB是底面圓O的直徑,AC=3,AB=5.
(1)求證:AC1∥平面COB1
(2)求二面角A-BC1-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,點M在邊BC上,且2$\overrightarrow{BM}$=3$\overrightarrow{MC}$,E在邊AC上,且$\overrightarrow{EC}$=3$\overrightarrow{AE}$,則向量$\overrightarrow{EM}$-$\overrightarrow{AB}$=( 。
A.$\frac{7}{20}$$\overrightarrow{AC}$-$\frac{3}{5}$$\overrightarrow{AB}$B.$\frac{7}{20}$$\overrightarrow{AC}$+$\frac{2}{5}$$\overrightarrow{AB}$C.$\frac{2}{5}$$\overrightarrow{AC}$-$\frac{3}{5}$$\overrightarrow{AB}$D.$\frac{1}{3}$$\overrightarrow{AC}$+$\frac{1}{5}$$\overrightarrow{AB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知0<θ≤$\frac{π}{2}$,則方程x2+y2•sinθ=1表示的平面圖形是( 。
A.焦點在x軸的橢圓B.焦點在y軸的橢圓
C.圓或焦點在x軸的橢圓D.圓或焦點在y軸的橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.(重點中學(xué)做)已知直線x-my-2=0與拋物線y2=8x相交于A,B兩點,線段AB的中點為M(6,4m),則|AB|=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知等腰三角形頂角的余弦值為$\frac{3}{4}$,則底角的正弦值是$\frac{\sqrt{14}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.以橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的焦點為頂點,頂點為焦點的雙曲線漸近線方程是( 。
A.y=±$\frac{\sqrt{3}}{3}$xB.y=±$\sqrt{3}$xC.y=±$\frac{\sqrt{3}}{2}$xD.y=±$\frac{2\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知m,n∈N*且n>m,在公比為q的等比數(shù)列{an}中,有an=am•qn-m成立,類似地,在公差為d的等差數(shù)列{bn}中,有bn=bm+(n-m)d成立.

查看答案和解析>>

同步練習(xí)冊答案