11.已知等腰三角形頂角的余弦值為$\frac{3}{4}$,則底角的正弦值是$\frac{\sqrt{14}}{4}$.

分析 由三角形內(nèi)角和以及二倍角公式可得得cos$\frac{A}{2}$,再由誘導(dǎo)公式可得.

解答 解:設(shè)等腰三角形頂角為A,則cosA=$\frac{3}{4}$,
由三角形的內(nèi)角和可得底角B=$\frac{π-A}{2}$=$\frac{π}{2}$-$\frac{A}{2}$,
由二倍角公式可得cosA=2cos2$\frac{A}{2}$-1=$\frac{3}{4}$,
解方程可得cos$\frac{A}{2}$=$\frac{\sqrt{14}}{4}$,
由誘導(dǎo)公式可得sinB=sin($\frac{π}{2}$-$\frac{A}{2}$)=cos$\frac{A}{2}$=$\frac{\sqrt{14}}{4}$,
故答案為:$\frac{\sqrt{14}}{4}$.

點(diǎn)評(píng) 本題考查三角函數(shù)恒等變換,涉及二倍角公式和三角形的內(nèi)角和以及誘導(dǎo)公式,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.?dāng)?shù)列{an}的前n項(xiàng)和為${S_n}={2^{n+1}}-2$,數(shù)列{bn}是首項(xiàng)為a1,公差為d(d≠0)的等差數(shù)列,且b1,b3,b9成等比數(shù)列.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)若${c_n}=\frac{2}{{{b_{n+2}}•{{log}_2}{a_n}}}$,數(shù)列{cn}的前n項(xiàng)和為 Tn,求證:${{T}_n}<\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知tanα=2,并且α為第三象限的角,那么cosα=( 。
A.-$\frac{2\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.-$\frac{\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=ex-ax-1(a>0,e為自然數(shù)的底數(shù)).
(1)求函數(shù)f(x)的最小值;
(2)若f(x)≥0對(duì)任意的x∈R恒成立,求實(shí)數(shù)a的值;
(3)在(2)的條件下,證明:1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$>ln(n+1)(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某單位用木料制作如圖所示的框架,框架的下部是邊長分別為x,y(單位:m)的矩形,上部是等腰直角三角形,要求框架圍成的總面積為4m2,問x,y分別為多少時(shí)用料最。坎⑶笞钍∮昧希

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知全集U=Z,集合A={1,6},A∪B={2,0,1,6},那么(∁UA)∩B=(  )
A.B.{3,4,5}C.{2,0}D.{1,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖為一簡單組合體,其底面ABCD為邊長2正方形,PD⊥平面ABCD,EC∥PD,且$PD=2\sqrt{2},CE=\sqrt{2}$. 
(1)若N為線段PB的中點(diǎn),求證:EN⊥平面PDB.
(2)求平面PBE與平面ABCD所成的二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知直線l1:3x-4y-4=0與直線l2:(a+7)x+ay+6=0(a∈R)平行.
(1)求a的值;
(2)若圓心在直線l:y=x+1上的圓與直線l1,l2均相切,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在區(qū)間[0,3]上隨機(jī)地取一個(gè)實(shí)數(shù)x,則事件“1≤2x-1≤3”發(fā)生的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案