9.如圖,小方格是邊長為1的正方形,一個幾何體的三視圖如圖,則原幾何體的體積為( 。
A.$\frac{32π}{3}$B.64+$\frac{32π}{3}$C.16πD.64+$\frac{256π}{3}$

分析 得到原幾何體的圖形,根據(jù)球的體積和正方體的體積計算即可.

解答 解:原幾何體是半徑是2的球和棱長是4的正方體,
故幾何體的體積是:$\frac{4}{3}$π•23+43=64+$\frac{32π}{3}$,
故選:B.

點評 本題考查了三視圖問題,考查球的體積和正方體的體積公式,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知橢圓C:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的左、右焦點分別為F1,F(xiàn)2,P為橢圓C上一點,滿足PF1=3PF2,則點P到右準(zhǔn)線的距離為$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知復(fù)數(shù)z=(cosθ-isinθ)(1+i),則“z為純虛數(shù)”的一個充分不必要條件是( 。
A.$θ=\frac{π}{4}$B.$θ=\frac{π}{2}$C.$θ=\frac{3π}{4}$D.$θ=\frac{5π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若f(x)=${e}^{-\frac{1}{x}}$,則$\underset{lim}{t→∞}\frac{f(1-2t)-f(1)}{t}$=-2e-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$彼此不共線,且$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$兩兩所成的角相等,若|$\overrightarrow{a}$|=1,|$\overrightarrow$|=1,|$\overrightarrow{c}$|=3,則|$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$|=$\frac{\sqrt{30}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)y=f(x)且lgy=lg(2x)+lg(2-x).
(1)函數(shù)f(x)的解析表達(dá)式及其定義域;
(2)函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若雙曲線C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的漸近線與圓x2+(y-2)2=1相切,則雙曲線C的離心率是(  )
A.2B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.i是虛數(shù)單位,則復(fù)數(shù)$z=\frac{2i-1}{i}$在復(fù)平面內(nèi)對應(yīng)的點在第一象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知等差數(shù)列{an}中,a1+a4+a7=$\frac{5}{4}$π,那么tan(a3+a5)的值是( 。
A.$\sqrt{3}$B.$-\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

同步練習(xí)冊答案