13.設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若c=$\sqrt{7}$,sinB=3sinA.
(1)若C=$\frac{π}{3}$,求a,b的值;
(2)若cosC=$\frac{1}{3}$,求△ABC的面積.

分析 (1)由已知等式及正弦定理可得b=3a,由余弦定理可得c2=a2+b2-2abcosC,聯(lián)立即可解得a,b的值.
(2)先求$sinC=\frac{{2\sqrt{2}}}{3}$,又b=3a,由余弦定理可得$c=2\sqrt{2}a$,可求a,b的值,利用三角形面積公式即可求值得解.

解答 (本小題滿(mǎn)分13分)
解:(1)$C=\frac{π}{3}$,由正弦定理知sinB=3sinA即b=3a,…(4分)
當(dāng)$c=\sqrt{7}$時(shí),由余弦定理可得c2=a2+b2-2abcosC,即7=a2+9a2-3a2,
解得a=1,b=3.…(7分)
(2)由$cosC=\frac{1}{3}$得$sinC=\frac{{2\sqrt{2}}}{3}$,又b=3a,
由余弦定理可得c2=a2+b2-2abcosC=a2+9a2-2a2=8a2,即$c=2\sqrt{2}a$.…(9分)
因?yàn)?c=\sqrt{7}$,所以$a=\frac{{\sqrt{14}}}{4},b=\frac{{3\sqrt{14}}}{4}$,…(12分)
因此${S_{△ABC}}=\frac{1}{2}absinC=\frac{1}{2}×\frac{{\sqrt{14}}}{4}×\frac{{3\sqrt{14}}}{4}×\frac{{2\sqrt{2}}}{3}=\frac{{7\sqrt{2}}}{8}$.…(13分)

點(diǎn)評(píng) 本題主要考查了正弦定理,三角形面積公式,余弦定理,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.下列命題,其中正確的是①(填寫(xiě)序號(hào)).
①若m⊥α,m∥n,則n⊥α;
②若m∥n,m?α,n?β,則α∥β;
③若直線m∥n,則直線m就平行于平面α內(nèi)的無(wú)數(shù)條直線;
④若∠ABC和∠A1B1C1的邊AB∥A1B1,AC∥A1C1,則∠ABC=∠A1B1C1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知f(logax)=log${\;}_{a}^{2}$x-alogax2+1(a>0且a≠1).
(1)求y=f(x)的解析式及其定義域;
(2)若函數(shù)y=f(x)-a在(0,1)內(nèi)有且只有一個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知三角形ABC三邊分別是a,b,c.邊AB上的高為CD,若CD=$\frac{1}{2}$c,則$\frac{2ab}{{(a+b)}^{2}}$的取值范圍是[$\sqrt{2}$-1,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{-x},x≤0}\\{lo{g}_{5}x,x>0}\end{array}\right.$,函數(shù)g(x)是周期為2的偶函數(shù),且當(dāng)x∈[0,1]時(shí),g(x)=2x-1,則函數(shù)F(x)=f(x)-g(x)的零點(diǎn)個(gè)數(shù)為( 。
A.8B.7C.6D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=ax2+2bx+c.
(Ⅰ)若a=-1,c=0,且y=f(x)在[-1,3]上的最大值為g(b),求g(b);
(Ⅱ)若a=1,且f(x)在區(qū)間(1,2)內(nèi)有且僅有2個(gè)零點(diǎn),求證:0<b+c<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若一組樣本數(shù)據(jù)9,8,x,10,11的平均數(shù)為10,則該組樣本數(shù)據(jù)的方差為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知tan(α-β)=$\frac{1}{2}$,tanβ=-$\frac{1}{3}$,且α,β∈(0,π),求α-2β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.過(guò)平面區(qū)域$\left\{\begin{array}{l}{x-y+2≥0}\\{y+2≥0}\\{x+y+2≤0}\end{array}\right.$內(nèi)一點(diǎn)作圓O:x2+y2=1的兩條切線,切點(diǎn)分別為A、B,記∠APB=α,則當(dāng)α最小時(shí),cosα的值為( 。
A.$\frac{9}{10}$B.$\frac{7}{10}$C.$\frac{\sqrt{5}}{20}$D.$\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案