【題目】如圖,已知橢圓,分別為其左、右焦點,過的直線與此橢圓相交于兩點,且的周長為8,橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)在平面直角坐標(biāo)系中,已知點與點,過的動直線(不與軸平行)與橢圓相交于兩點,點是點關(guān)于軸的對稱點.求證:
(i)三點共線.
(ii).
【答案】(Ⅰ);(Ⅱ)詳見解析.
【解析】
Ⅰ由三角形的周長可得,根據(jù)離心率可得,即可求出,則橢圓方程可求;Ⅱ當(dāng)直線l的斜率不存在時,A、B分別為橢圓短軸兩端點,滿足Q,A,三點共線當(dāng)直線l的斜率存在時,設(shè)直線方程為,聯(lián)立直線方程與橢圓方程,化為關(guān)于x的一元二次方程,然后利用向量證明.由可知Q,A,三點共線,即,問題得以證明.
解:Ⅰ的周長為8,,即,
,,,
故橢圓C的方程為
Ⅱ證明:當(dāng)直線l的斜率不存在時,A、B分別為橢圓短軸兩端點,滿足Q,A,三點共線.
當(dāng)直線l的斜率存在時,設(shè)直線方程為,
聯(lián)立,得.
設(shè),,則,
,,
,,
.
與共線,則Q,A,三點共線.
由可知Q,A,三點共線,
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓:的左、右焦點分別為,,下頂點為,橢圓的離心率是,的面積是.
(1)求橢圓的標(biāo)準方程.
(2)直線與橢圓交于,兩點(異于點),若直線與直線的斜率之和為1,證明:直線恒過定點,并求出該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,是過定點且傾斜角為的直線;在極坐標(biāo)系(以坐標(biāo)原點為極點,以軸非負半軸為極軸,取相同單位長度)中,曲線的極坐標(biāo)方程為.
(1)寫出直線的參數(shù)方程,并將曲線的方程化為直角坐標(biāo)方程;
(2)若曲線與直線相交于不同的兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右焦點分別是,,且,點在橢圓上,面積的最大值為.
(1)求橢圓的方程;
(2)過的直線交橢圓于、兩點,求內(nèi)切圓半徑的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:對于數(shù)列,如果存在常數(shù),使對任意正整數(shù),總有成立,那么我們稱數(shù)列為“﹣擺動數(shù)列”.
①若,,,則數(shù)列_____“﹣擺動數(shù)列”,_____“﹣擺動數(shù)列”(回答是或不是);
②已知“﹣擺動數(shù)列”滿足,.則常數(shù)的值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點為F,過點F作垂直于x軸的直線與拋物線交于A,B兩點,且以線段AB為直徑的圓過點.
(1)求拋物線C的方程;
(2)設(shè)過點的直線分別與拋物線C交于點D,E和點G,H,且,求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F是拋物線y2=4x的焦點,M,P,Q是拋物線上三個不同的動點,直線PM過點F,MQ∥OP,直線QP與MO交于點N.記點M,P,Q的縱坐標(biāo)分別為y0,y1,y2.
(1)證明:y0=y1﹣y2;
(2)證明:點N的橫坐標(biāo)為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com