分析 (1)利用三角函數恒等變換的應用化簡已知等式可得:2sinAcosA=-sinA,由于sinA≠0,解得cosA=-$\frac{1}{2}$,從而可求A的值.
(2)由正弦定理化簡已知等式可得3b=4c,利用三角形面積公式結合已知可解得bc=12,聯立可解得b,c的值,利用余弦定理即可求得a的值.
解答 解:(1)∵sin2A+2sinCcosB=sin(C-B),
∴2sinAcosA+2sinCcosB=sinCcosB-cosCsinB,整理可得:2sinAcosA=-(cosCsinB+sinCcosB)=-sin(B+C)=-sinA,
∵A∈(0,π),sinA≠0,
∴解得:cosA=-$\frac{1}{2}$,A=$\frac{2π}{3}$.
(2)∵3sinB=4sinC,
∴由正弦定理可得:3b=4c,①
∵S△ABC=3$\sqrt{3}$=$\frac{1}{2}$bcsinA=$\frac{1}{2}×\frac{\sqrt{3}}{2}$bc,解得:bc=12,②
∴由①②可解得:b=4,c=3,
∴由余弦定理可得:a=$\sqrt{^{2}+{c}^{2}-2bccosA}$=$\sqrt{16+9-2×4×3×(-\frac{1}{2})}$=$\sqrt{37}$.
點評 本題主要考查了三角函數恒等變換的應用,正弦定理,三角形面積公式,余弦定理在解三角形中的應用,考查了計算能力和轉化思想,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com