1.已知函數(shù)f(x)=ax3+bx2+cx在點(diǎn)x0處取得極大值5,其導(dǎo)導(dǎo)數(shù)y=f′(x)的圖象經(jīng)過點(diǎn)(1,0),(2,0),如圖所示,求x0的值和函數(shù)(x)的極小值.

分析 觀察圖象滿足f′(x)=0的點(diǎn)附近的導(dǎo)數(shù)的符號的變化情況,來確定極小值,求出x0的值;由函數(shù)的圖象知函數(shù)在x=2處取得極小值.

解答 解:由圖象可知,在(-∞,1)上f′(x)>0,在(1,2)上f′(x)<0.
在(2,+∞)上f′(x)>0.
故f(x)在(-∞,1),(2,+∞)上遞增,在(1,2)上遞減.
因此f(x)在x=1處取得極大值,所以x0=1.
f′(x)=3ax2+2bx+c,
由f′(1)=0,f′(2)=0,f(1)=5,
得$\left\{\begin{array}{l}{3a+2b+c=0}\\{12a+4b+c=0}\\{a+b+c=5}\end{array}\right.$,
解得a=2,b=-9,c=12;
可得函數(shù)在x=2處取得極小值f(2)=2×23-9×22+24=4.

點(diǎn)評 本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的極值、單調(diào)性,以及觀察圖形的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知△ABC的外接圓的圓心為點(diǎn)O,半徑為l,若$\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AO}$,且|$\overrightarrow{AO}$|=|$\overrightarrow{AC}$|,則$\overrightarrow{BA}•\overrightarrow{BC}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.日本“購買”釣魚島鬧劇以來,我國漁政船加強(qiáng)了釣魚島附近海域的巡邏.正在海上A處執(zhí)行任務(wù)的漁政船甲和在B處執(zhí)行任務(wù)的漁政船乙,同時(shí)收到同一片海域上一艘漁船丙的求救信號,此時(shí)漁船丙在漁政船甲的南偏東40°方向距漁政船甲70km的C處,漁政船乙在漁政船甲的南偏西20°方向的B處,兩艘漁政船協(xié)調(diào)后立即讓漁政船甲向漁船丙所在的位置C處沿直線AC航行前去救援,漁政船乙仍留在B處執(zhí)行任務(wù),漁政船甲航行30km到達(dá)D處時(shí),收到新的指令另有重要任務(wù)必須執(zhí)行,于是立即通知在B處執(zhí)行任務(wù)的漁政船乙前去救援漁船丙(漁政船乙沿直線BC航行前去救援漁船丙),此時(shí)∠ADB=30°,問漁政船乙要航行多少距離才能到達(dá)漁船丙所在的位置C處實(shí)施營救.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.定義f(n)=$\sum_{i=1}^{n}$[$\frac{n}{i}$],其中[x]表示不超過實(shí)數(shù)x的最大整數(shù),則f(2010)-f(2009)=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知等差數(shù)列1,a,b,又4,a+2,b+1為等比數(shù)列,求該等差數(shù)列的公差( 。
A.-1B.0C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=($\frac{a}{2}$x-1)ln$\frac{a}{x}$(a>0).
(1)若函數(shù)f(x)在x=1處的切線斜率為$\frac{1}{2}$,求a的值;
(2)若f(x)≤0對任意x∈(0,+∞)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,且F1,F(xiàn)2與短軸的一個(gè)頂點(diǎn)Q構(gòu)成一個(gè)等腰直角三角形,點(diǎn)P($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$)在橢圓C上.
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過F2作互相垂直的兩直線AB,CD分別交橢圓于點(diǎn)A,B,C,D,且M,N分別是弦AB,CD的中點(diǎn),求△MNF2面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,a,b,c分別為角A,B,C所對的邊,且sin2A+2sinCcosB=sin(C-B).
(1)求A;
(2)若3sinB=4sinC,S△ABC=3$\sqrt{3}$,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知集合A={x|sinx=$\frac{1}{2}$},集合B={x|tanx=-$\frac{\sqrt{3}}{3}$},求A∩B.

查看答案和解析>>

同步練習(xí)冊答案