【題目】設(shè)函數(shù)

(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;

(2)討論函數(shù)的單調(diào)性;

(3)當(dāng)時(shí),求證:對(duì)任意,都有

【答案】(1);(2見(jiàn)解析;(3見(jiàn)解析.

【解析】試題分析:1當(dāng)時(shí),求出導(dǎo)數(shù)易得,即,利用點(diǎn)斜式可得其切線方程;(2)求得可得,分為兩種情形判斷其單調(diào)性;(3)當(dāng)時(shí),根據(jù)(2)可得函數(shù)上單調(diào)遞減,故,即,化簡(jiǎn)可得所證結(jié)論.

試題解析:1)當(dāng)時(shí), , , , ,所以函數(shù)在點(diǎn)處的切線方程為,即

2,定義域?yàn)?/span>

當(dāng)時(shí), ,故函數(shù)上單調(diào)遞減;

當(dāng)時(shí),令,得

x

極小值

綜上所述,當(dāng)時(shí), 上單調(diào)遞減;當(dāng)時(shí),函數(shù)上單調(diào)遞減,在上單調(diào)遞增.

3)當(dāng)時(shí),由(2)可知,函數(shù)上單調(diào)遞減,顯然, ,故,所以函數(shù)上單調(diào)遞減,對(duì)任意,都有,所以.所以,即,所以,即,所以,即,所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是奇函數(shù).

(1)求實(shí)數(shù)的值;

(2)用定義證明函數(shù)上的單調(diào)性;

(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形ABCD所在平面外一點(diǎn)P,PA⊥平面ABCD,E、F分別是AB,PC的中點(diǎn).

(1)求證:EF∥平面PAD;
(2)求證:EF⊥CD;
(3)若∠PDA=45°,求EF與平面ABCD所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形O′A′B′C′的邊長(zhǎng)為1cm,它是水平放置的一個(gè)平面圖形的直觀圖,則原圖的周長(zhǎng)是(

A.8cm
B.6cm
C.2(1+ )cm
D.2(1+ )cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)下列條件,分別求直線方程:
(1)經(jīng)過(guò)點(diǎn)A(3,0)且與直線2x+y﹣5=0垂直;
(2)求經(jīng)過(guò)直線x﹣y﹣1=0與2x+y﹣2=0的交點(diǎn),且平行于直線x+2y﹣3=0的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲、乙兩種商品,經(jīng)銷這兩種商品所能獲得的利潤(rùn)分別是p萬(wàn)元和q萬(wàn)元.它們與投入資金x萬(wàn)元的關(guān)系是:p= x,q= .今有3萬(wàn)元資金投入經(jīng)營(yíng)這兩種商品,為獲得最大利潤(rùn),對(duì)這兩種商品的資金分別投入多少時(shí),能獲取最大利潤(rùn)?最大利潤(rùn)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+lnx(a∈R).

(1)當(dāng)a=時(shí),求f(x)在區(qū)間[1,e]上的最大值和最小值;

(2)如果函數(shù)g(x),f1x),f2(x),在公共定義域D上,滿足f1x)<gx)<f2(x),那么就稱g(x)為f1x),f2(x)的“活動(dòng)函數(shù)”.已知函數(shù). 。若在區(qū)間(1,+∞)上,函數(shù)f(x)是f1x),f2(x)的“活動(dòng)函數(shù)”,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合A={x|25≤2x≤4},B={x|x2+2mx﹣3m2<0,m>0}.

(1)若m=2,求A∩B;

(2)若BA,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=cos(ωx+φ)(ω>0),x=﹣ 是y=f(x)的零點(diǎn),直線x= 為y=f(x)圖象的一條對(duì)稱軸,且函數(shù)f(x)在區(qū)間( , )上單調(diào),則ω的最大值是(
A.9
B.7
C.5
D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案