(1)已知圓C的圓心是x-y+1=0與x軸的交點(diǎn),且與直線x+y+3=0相切,求圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P(x,y)在圓x2+y2-4y+3=0上,求
y
x
的最大值.
考點(diǎn):直線與圓的位置關(guān)系,圓的切線方程
專題:綜合題,直線與圓
分析:(1)求出直線x-y+1=0與x軸的交點(diǎn)即為圓心C坐標(biāo),求出點(diǎn)C到直線x+y+3=0的距離即為圓的半徑,寫出圓的標(biāo)準(zhǔn)方程即可;
(2)設(shè)
y
x
=k,則y=kx,代入x2+y2-4y+3=0,可得(1+k2)x2-4kx+3=0,由△=16k2-12(1+k2)≥0,可得結(jié)論.
解答: 解:(1)對于直線x-y+1=0,令y=0,得到x=-1,即圓心C(-1,0),
∵圓心C(-1,0)到直線x+y+3=0的距離d=
|-1+0+3|
2
=
2
,
∴圓C半徑r=
2

則圓C方程為(x+1)2+y2=2;
(2)設(shè)
y
x
=k,則y=kx,代入x2+y2-4y+3=0,可得(1+k2)x2-4kx+3=0,
由△=16k2-12(1+k2)≥0,可得-
3
3
≤k≤
3
3

y
x
的最大值為
3
3
點(diǎn)評:此題考查了圓的標(biāo)準(zhǔn)方程,涉及的知識有:一次函數(shù)與x軸的交點(diǎn),點(diǎn)到直線的距離公式,以及直線與圓的位置關(guān)系,求出圓心坐標(biāo)與半徑是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件:
x+y-5≥0
x-y+1≤0
,則z=x+2y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l與圓C:x2+y2+2x-4y+a=0相交于A,B兩點(diǎn),弦AB的中點(diǎn)為M(0,1),
(1)求實(shí)數(shù)a的取值范圍以及直線l的方程;
(2)若圓C上存在四個點(diǎn)到直線l的距離為
2
,求實(shí)數(shù)a的取值范圍;
(3)已知N(0,-3),若圓C上存在兩個不同的點(diǎn)P,使PM=
3
PN,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合{3,|x|,x}={-2,2,y},則(
1
2
)x+2y
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=logax(a>0,a≠1)在[
1
2
,4]上的最大值是M,最小值是m,且M-m=3,則實(shí)數(shù)a=( 。
A、
1
2
B、2
C、
1
3
且2
D、
1
2
或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x),當(dāng)x>0時,f(x)=x2-2x-3,則f(x)的單調(diào)減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=(2-a)x在定義域內(nèi)是減函數(shù),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|
1-3x
x-7
-1>0}
,B={x|x2-4x+4-m2≤0,m>0},
(1)若m=3,求A∩B;
(2)若A∪B=B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:lg4+lg250=
 

查看答案和解析>>

同步練習(xí)冊答案